• Title/Summary/Keyword: Rapid learning

Search Result 613, Processing Time 0.029 seconds

Anomaly Detection System in Mechanical Facility Equipment: Using Long Short-Term Memory Variational Autoencoder (LSTM-VAE를 활용한 기계시설물 장치의 이상 탐지 시스템)

  • Seo, Jaehong;Park, Junsung;Yoo, Joonwoo;Park, Heejun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.581-594
    • /
    • 2021
  • Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.

Store Sales Prediction Using Gradient Boosting Model (그래디언트 부스팅 모델을 활용한 상점 매출 예측)

  • Choi, Jaeyoung;Yang, Heeyoon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.171-177
    • /
    • 2021
  • Through the rapid developments in machine learning, there have been diverse utilization approaches not only in industrial fields but also in daily life. Implementations of machine learning on financial data, also have been of interest. Herein, we employ machine learning algorithms to store sales data and present future applications for fintech enterprises. We utilize diverse missing data processing methods to handle missing data and apply gradient boosting machine learning algorithms; XGBoost, LightGBM, CatBoost to predict the future revenue of individual stores. As a result, we found that using median imputation onto missing data with the appliance of the xgboost algorithm has the best accuracy. By employing the proposed method, fintech enterprises and customers can attain benefits. Stores can benefit by receiving financial assistance beforehand from fintech companies, while these corporations can benefit by offering financial support to these stores with low risk.

An Analysis of Learners' Difficulties and Proposal of Learning Support Plan for the Expansion of Online Education in Domestic Universities (국내대학의 온라인교육 확대에 따른 학습자의 어려움 및 학습지원방안)

  • Kim, Jae-Yeob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • The spread of COVID-19 and the advent of the Fourth Industrial Revolution have significantly affected the nature of college education causing many changes to the way it is conducted. One of these changes is the expansion of online education. The purpose of this study was to analyze the difficulties experienced by learners due to the transition to rapidly expanding online education at domestic universities, and to seek ways to support their learning through this new online platform. Results of a questionnaire showed that learners experienced difficulties in their interactions with professors because of the rapid transition to online education without adequate preparation. It was determined that there were not enough opportunities for communication between learners and professors as a result of non-face-to-face online education, and that learners did not receive Q&A or feedback quickly enough. The study also examined ways to ways to improve the effectiveness of online learning. Students showed a high preference for items such as "appropriate guidance regarding announcements such as lecture schedules," "providing lecture notes as learning materials."

A Network Packet Analysis Method to Discover Malicious Activities

  • Kwon, Taewoong;Myung, Joonwoo;Lee, Jun;Kim, Kyu-il;Song, Jungsuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.143-153
    • /
    • 2022
  • With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

Thermal post-buckling measurement of the advanced nanocomposites reinforced concrete systems via both mathematical modeling and machine learning algorithm

  • Minggui Zhou;Gongxing Yan;Danping Hu;Haitham A. Mahmoud
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.623-638
    • /
    • 2024
  • This study investigates the thermal post-buckling behavior of concrete eccentric annular sector plates reinforced with graphene oxide powders (GOPs). Employing the minimum total potential energy principle, the plates' stability and response under thermal loads are analyzed. The Haber-Schaim foundation model is utilized to account for the support conditions, while the transform differential quadrature method (TDQM) is applied to solve the governing differential equations efficiently. The integration of GOPs significantly enhances the mechanical properties and stability of the plates, making them suitable for advanced engineering applications. Numerical results demonstrate the critical thermal loads and post-buckling paths, providing valuable insights into the design and optimization of such reinforced structures. This study presents a machine learning algorithm designed to predict complex engineering phenomena using datasets derived from presented mathematical modeling. By leveraging advanced data analytics and machine learning techniques, the algorithm effectively captures and learns intricate patterns from the mathematical models, providing accurate and efficient predictions. The methodology involves generating comprehensive datasets from mathematical simulations, which are then used to train the machine learning model. The trained model is capable of predicting various engineering outcomes, such as stress, strain, and thermal responses, with high precision. This approach significantly reduces the computational time and resources required for traditional simulations, enabling rapid and reliable analysis. This comprehensive approach offers a robust framework for predicting the thermal post-buckling behavior of reinforced concrete plates, contributing to the development of resilient and efficient structural components in civil engineering.

Efficacy of Learning Disorder Treatment for Reading or Mathematics Disorders: An Open Study

  • Hyunju Lee;Inhye Song;Woo Young Kim;Hannah Huh;Eun Kyoung Lee;Jaesuk Jung;Cheon Seok Suh;Hanik Yoo
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.35 no.2
    • /
    • pp.143-149
    • /
    • 2024
  • Objectives: This study aimed to identify the effectiveness of treatment programs for children with reading (RD) or mathematics disorders (MD). Structured treatment programs were developed to improve phonological awareness and number sense among children and adolescents with RD or MD, respectively, and the effectiveness of the learning disorder treatment programs were evaluated. Methods: We used standardized, objective diagnostic, and evaluation tools not only to recruit participants with RD, MD, or comorbid attention deficit and hyperactivity disorder, but also to assess the effectiveness of the treatments regarding both improved core neurocognitive deficits of RD or MD and academic achievement. Forty children with RD or MD received one-on-one treatments from therapists. Results: In the RD group, treatment effects were observed in all subtests. In the word and paragraph reading tests, the accuracy rates and fluency improved. The results of the phonological working memory test, word-sound correspondence test, and rapid automatic naming tests also improved. In the MD group, the accuracy rate and fluency on the arithmetic test improved. An increase in the accuracy rate in the size and distance comparison tests and a decrease in the error rate in the estimation test were also observed. However, there were no improvements in reaction time in these subtests. Conclusion: Learning disorder treatment programs that focus on improving phonological awareness or number sense in children with RD or MD improved achievement, phonological awareness, and number sense.

Case Analysis of Applications of Seismic Data Denoising Methods using Deep-Learning Techniques (심층 학습 기법을 이용한 탄성파 자료 잡음 제거 적용사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.72-88
    • /
    • 2020
  • Recent rapid advances in computer hardware performance have led to relatively low computational costs, increasing the number of applications of machine-learning techniques to geophysical problems. In particular, deep-learning techniques are gaining in popularity as the number of cases successfully solving complex and nonlinear problems has gradually increased. In this paper, applications of seismic data denoising methods using deep-learning techniques are introduced and investigated. Depending on the type of attenuated noise, these studies are grouped into denoising applications of coherent noise, random noise, and the combination of these two types of noise. Then, we investigate the deep-learning techniques used to remove the corresponding noise. Unlike conventional methods used to attenuate seismic noise, deep neural networks, a typical deep-learning technique, learn the characteristics of the noise independently and then automatically optimize the parameters. Therefore, such methods are less sensitive to generalized problems than conventional methods and can reduce labor costs. Several studies have also demonstrated that deep-learning techniques perform well in terms of computational cost and denoising performance. Based on the results of the applications covered in this paper, the pros and cons of the deep-learning techniques used to remove seismic noise are analyzed and discussed.

Design and Implementation of a Pre-processing Method for Image-based Deep Learning of Malware (악성코드의 이미지 기반 딥러닝을 위한 전처리 방법 설계 및 개발)

  • Park, Jihyeon;Kim, Taeok;Shin, Yulim;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.650-657
    • /
    • 2020
  • The rapid growth of internet users and faster network speed are driving the new ICT services. ICT Technology has improved our way of thinking and style of life, but it has created security problems such as malware, ransomware, and so on. Therefore, we should research against the increase of malware and the emergence of malicious code. For this, it is necessary to accurately and quickly detect and classify malware family. In this paper, we analyzed and classified visualization technology, which is a preprocessing technology used for deep learning-based malware classification. The first method is to convert each byte into one pixel of the image to produce a grayscale image. The second method is to convert 2bytes of the binary to create a pair of coordinates. The third method is the method using LSH. We proposed improving the technique of using the entire existing malicious code file for visualization, extracting only the areas where important information is expected to exist and then visualizing it. As a result of experimenting in the method we proposed, it shows that selecting and visualizing important information and then classifying it, rather than containing all the information in malicious code, can produce better learning results.

SVM-Based Incremental Learning Algorithm for Large-Scale Data Stream in Cloud Computing

  • Wang, Ning;Yang, Yang;Feng, Liyuan;Mi, Zhenqiang;Meng, Kun;Ji, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3378-3393
    • /
    • 2014
  • We have witnessed the rapid development of information technology in recent years. One of the key phenomena is the fast, near-exponential increase of data. Consequently, most of the traditional data classification methods fail to meet the dynamic and real-time demands of today's data processing and analyzing needs--especially for continuous data streams. This paper proposes an improved incremental learning algorithm for a large-scale data stream, which is based on SVM (Support Vector Machine) and is named DS-IILS. The DS-IILS takes the load condition of the entire system and the node performance into consideration to improve efficiency. The threshold of the distance to the optimal separating hyperplane is given in the DS-IILS algorithm. The samples of the history sample set and the incremental sample set that are within the scope of the threshold are all reserved. These reserved samples are treated as the training sample set. To design a more accurate classifier, the effects of the data volumes of the history sample set and the incremental sample set are handled by weighted processing. Finally, the algorithm is implemented in a cloud computing system and is applied to study user behaviors. The results of the experiment are provided and compared with other incremental learning algorithms. The results show that the DS-IILS can improve training efficiency and guarantee relatively high classification accuracy at the same time, which is consistent with the theoretical analysis.

Improved Handwritten Hangeul Recognition using Deep Learning based on GoogLenet (GoogLenet 기반의 딥 러닝을 이용한 향상된 한글 필기체 인식)

  • Kim, Hyunwoo;Chung, Yoojin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.495-502
    • /
    • 2018
  • The advent of deep learning technology has made rapid progress in handwritten letter recognition in many languages. Handwritten Chinese recognition has improved to 97.2% accuracy while handwritten Japanese recognition approached 99.53% percent accuracy. Hanguel handwritten letters have many similar characters due to the characteristics of Hangeul, so it was difficult to recognize the letters because the number of data was small. In the handwritten Hanguel recognition using Hybrid Learning, it used a low layer model based on lenet and showed 96.34% accuracy in handwritten Hanguel database PE92. In this paper, 98.64% accuracy was obtained by organizing deep CNN (Convolution Neural Network) in handwritten Hangeul recognition. We designed a new network for handwritten Hangeul data based on GoogLenet without using the data augmentation or the multitasking techniques used in Hybrid learning.