• Title/Summary/Keyword: Rapid development system

Search Result 2,000, Processing Time 0.027 seconds

Hybrid Multi-System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

  • Putra, Rachmad Vidya Wicaksana;Adiono, Trio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • In this paper, we propose a hybrid multi.system-on-chip (H-MSoC) architecture that provides a high-flexibility system in a rapid development time. The H-MSoC approach provides a flexible system-on-chip (SoC) architecture that is easy to configure for physical- and application-layer development. The physical- and application-layer aspects are dynamically designed and modified; hence, it is important to consider a design methodology that supports rapid SoC development. Physical layer development refers to intellectual property cores or other modular hardware (HW) development, while application layer development refers to user interface or application software (SW) development. H-MSoC is built from multi-SoC architectures in which each SoC is localized and specified based on its development focus, either physical or application (hybrid). Physical HW development SoC is referred to as physical-SoC (Phy-SoC) and application SW development SoC is referred to as application-SoC (App-SoC). Phy-SoC and App-SoC are connected to each other via Ethernet. Ethernet was chosen because of its flexibility, high speed, and easy configuration. For prototyping, we used a LEON3 SoC as the Phy-SoC and a ZYNQ-7000 SoC as the App-SoC. The proposed design was proven in real-time tests and achieved good performance.

Impact on societal system and rapid response strategies for the recovery: Cases of rapid vaccine development programme (시스템 충격과 회복을 위한 신속대응 전략: 백신 신속개발 프로그램 사례연구)

  • Inyong Park;Mi-young Park
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.1
    • /
    • pp.34-49
    • /
    • 2024
  • Since the outbreak of COVID-19, 'overcoming infectious disease' has emerged as a priority task for most policies. Each country has implemented policy programs to significantly shorten the vaccine development period with the goal of rapid vaccine development. This study judged this process to be a shock to the existing social and technological system and its recovery. Accordingly, the United States' Operation Warp Speed, CEPI's 100 days mission, and Japan's SCARDA were selected as examples of policy programs with 'rapid vaccine development' as their mission and analyzed difference from traditional vaccine development system in terms of rapid development. As a result, it was confirmed that the accumulation of innovative resources was shared as the key to achieving the mission in the preparation stage before the outbreak of an infectious disease. However, it was also possible to discover an approach to shortening the period of each stage without fundamentally changing the vaccine development structure itself.

Research Trend of an International IMS RPD Project (국제 IMS RPD 프로젝트의 연구 동향)

  • 최병욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2000
  • The Intelligent Manufacturing Systems (IMS) Rapid Product Development (RPD) Project is an international partnership formed to build a pre-competitive research and development program that will address the integration of new technologies in manufacturing and provide an infrastructure for industry to cooperate much more closely in the product development cycle. In this explanatory paper, a research trend of the RPD project is briefly presented, together with its background and state-of-the-art, focusing on objectives and target results of its sub-projects which include rapid development of functional parts and tools, validation and reverse engineering, and information logistic system.

  • PDF

Development of Rapid Tooling Processes Based on Three-Dimensional CAD/CAM (3차원 CAD/CAM 기반 초단납기 금형제작기술 개발)

  • Ahn, J. H.;Park, K.;Kim, C. K.;Park, B. C.;Choi, S. R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • The present work concerns rapid tooling technology based on three-dimensional CAD/CAM. Two types of tooling processes have been introduced : the quick delivery molding(QDM) process and the rapid tooling(RT) process using a rapid prototyping system. Both processes are based on three-dimensional CAD/CAM technology and realize a paperless manufacturing system with a high efficiency. The proposed approach has been applied to the product development for various electrical parts, and the final delivery has been reduced as compared with the traditional approach.

  • PDF

Status and Potential of Personal Rapid Transit (소형궤도열차의 현황 및 가능성)

  • Jeong R.G.;Cho H.S.;Kim Y.S.;Chung S.G.;Lee A.H.
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.232-238
    • /
    • 2003
  • This paper carry out research on status of the development for personal rapid transit in world's classified by each system. review of potential development a thesis of system conception according to system in comparison with developed specification and element a technology review, local area, capacity etc. will propose a new scheme for a confirmed technology of personal rapid transit

  • PDF

Implementation of Rapid Application Development Method in the Development of Geographic Information Systems of Industrial Centers

  • Sasmito, Ginanjar Wiro;Wibowo, Dega Surono;Dairoh, Dairoh
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Cities in Indonesia include diverse scattered industrial centers comprising industries that can sustain the existing economic pace. For industrial data collection, the city government still relies on census that consumes extensive time and money. The public are unfamiliar with industries owing to their lack of industry information; therefore, the market share is not optimal. In addition, the opportunity to procure investors for business development is limited. A Geographic Information System (GIS) is a computer system that can record, store, write, analyze, and display geographical data. Using the Rapid Application Development (RAD) method, GIS was developed on a website platform to provide information on industry profiles, types of production, investment values, industry maps, and industrial locations in each village and sub-district to a wider community. The RAD method was chosen compared to the waterfall method because it could accelerate website development process.

Development of Sheet Deposition Type Rapid Prototyping System Minimizing Post Processing (후처리를 최소화하는 판재적층방식 쾌속조형기의 개발)

  • Cho, In-Haeng;Lee, Kun-Woo;Song, Yong-Ak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.210-218
    • /
    • 1999
  • Sheet deposition type rapid prototyping system have many advantages : high build speed, low operating cost, large part size, no phase change, no need for support generation, and forth. However, those sheet deposition type rapid prototyping system require an additional post processing to remove excessive material attached to the part. This post processing is time consuming and labor intensive. Moreover, it is difficult for those system to fabricate parts with hollow cores and internal cavities. A new sheet deposition type rapid prototyping system that minimizes the post processing is proposed. The proposed system automatically removes excessive material in a peeling-off process between two cutting processes. In this way, the proposed system can reduce the post-processing time and cost as well as the limitation of the feasible geometric shapes in the conventional sheet deposition system.

  • PDF

Development of New Rapid Prototyping System Performing both Deposition and Machining(I);Process and Framework (적층과 절삭을 복합적으로 수행하는 새로운 개녕의 판재 적층식 쾌속 시작 시스템의 개발(I);공정 및 기반구조)

  • Heo, Jeong-Hun;Hwang, Jae-Cheol;Lee, Geon-U;Kim, Jong-Won;Han, Dong-Cheol;Ju, Jong-Nam;Park, Jong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1958-1967
    • /
    • 2000
  • Rapid Prototyping( RP ) has been increasingly applied in the process of design and development of new products. RP can shrink the time and expense required to bring a new product from initial concept to production. However, the necessity of using RP for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy materials, and cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed in this paper. It incorporates both material deposition in layers and material removal from the outer surface of the layer to produce the required surface finish. The new hybrid-RP system can dramatically reduce the total build time and fabricate largo-sized and freeform objects because it uses very thick layers, i.e.