• 제목/요약/키워드: Rapid cooling

검색결과 406건 처리시간 0.027초

급속냉각형 순환유동층 열교환기의 다이옥신 저감성능 연구 (A Study on Dioxin Reduction Characteristics of Rapid Cooling Type Circulating Fluidized Bed Heat Exchanger)

  • 박상일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1231-1236
    • /
    • 2008
  • The flow and heat transfer performance were measured at high temperatures in CFB heat exchanger with multiple risers and downcomers. The theoretical model for predicting heat exchanger performance was developed in this study. The model predictions were compared with the measured heat transfer rates to show relatively good agreement. The maximum gas cooling rate was $20,300^{\circ}C/sec$, and the dioxin reduction rate was 68%.

  • PDF

MPCM을 적용한 액냉형 냉각기의 성능 특성에 관한 연구 (Performance Characteristics of Liquid-Cooling Heat Exchangers with MPCM Slurry Designed for Telecommunication Equipment)

  • 전종욱;김용찬;최종민;현동수;윤린
    • 설비공학논문집
    • /
    • 제19권10호
    • /
    • pp.710-717
    • /
    • 2007
  • Electric and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers with MPCM slurries were designed and tested by varying geometry and operating conditions. The liquid-cooling heat exchangers with 4-paths showed higher cooling performance than the others. The cooling performance of liquid cooling heat exchanger with MPCM slurries was more enhanced than that of the air cooling system. It's performance was also slightly superior to that of the water cooling system at the inlet temperature of $19^{\circ}C$.

보론 첨가강에서 연주 냉각속도가 고온연성에 미치는 영향 연구 (주편 코너 크랙 발생 방지 방안 확보 연구) (Effect of cooling rate on the hot ductility of boron bearing steel during continuous casting (Study for prevention of corner crack on continuous casting slab))

  • 조경철;구양모;박중길
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.329-337
    • /
    • 2008
  • During the continuous casting of boron-bearing steel, the corner cracks on the slab are formed by deformation with low strain rate and rapid cooling at the unbending temperature within the range of 800- $1000^{\circ}C$. Especially, the rapid cooling in the corner of slab during the continuous casting leads to as corner cracking. Therefore, in this study, the hot tensile tests applied to the different cooling rates were taken into account in order to study the effect of cooling rate on the hot ductility of boron-bearing steel. The results revealed that increasing cooling rate deteriorate the hot ductility of boron- bearing steel. Rapid decreasing of the hot ductility is caused by formation of a film-like ferrite and precipitate at the austenite grain boundaries. The morphology of the precipitates in the boron-bearing steel was monitored by PTA (Particle Tracking Autoradiography) and TEM, we observed MnS and BN compound and their morphology was quite different depending on the cooling rates. When the cooling rate is increased, rodshape MnS and BN precipitates can be formed along the austenite grain boundaries. It can cause that weakening the boundary region and decreasing the hot ductility of boron-bearing steel.

RT 기술을 이용한 사출금형의 3 차원 냉각 채널 구현 (Implementation of 3-Dimensional Cooling Channel in Injection Mold Using RT Technology)

  • 김종덕;홍석관;이경환;김미애;이대근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.199-200
    • /
    • 2006
  • It will not be an exaggeration to say that one of the most important features of RT (Rapid Tooling) technology is to easy manufacturing complex shape of cooling channel in injection mold. That is, RT technology is hardly influenced complex shape of tool, Therefore, mold designer can optimize the position and shape of cooling channel whatever they want. In this study, we optimized cooling channel through CAE analysis to solve the problem; prototype-connector-mold applied conventional cooling channel, locally warped by internal stress: The effect of three-dimensional cooling channel was supported by simulation result. But it is impossible to produce injection mold applied three-dimensional cooling channel through machining operation. Therefore, we produced the prototype-connector-mold with three-dimensional cooling channel using Direct Metal Laser Sintering (DMLS) process, and get good-quality prototype-connector without warpage.

  • PDF

정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구 (The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis)

  • 민인기;조성우;윤경환
    • 소성∙가공
    • /
    • 제22권1호
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.

Apple Quality as Affected by the Precooling Rate and $O_2$ Pulldown Rate in Controlled Atmosphere Storage

  • Mahajan, P.V.;Goswami, T.K.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.10-17
    • /
    • 2002
  • Quality attributes of apple are greatly affected by the cooling rate and environmental conditions during storage. Studies were conducted to evaluate the effect of cooling rate on different quality attributes of apple. The effect of $O_2$ pulldown rate of the CA chamber on the quality of apple was also determined. Two methods were used viz. conventional CA procedure and rapid CA procedure. Apples stored by medium and slow cooling methods lost its flesh firmness significantly from an initial level of 4.55 kg to 2.83 kg and 2.27 kg, respectively on 35 days after storage whereas, in rapid cooling, the firmness level changed from 4.55 kg to 3.20 kg on 35 days after storage. At the end of 35 days of storage, titratable acidity decreased insignificantly from an initial value of 0.24l% to 0.239% in the case of rapid CA whereas in the case of conventional CA it dropped significantly to 0.215% from its initial level. The initial flesh firmness of 4.55 kg also changed significantly to 4.05 kg on 35 days after storage in conventional CA whereas in rapid CA it changed to 4.36 kg, which was found to be non-significant at 5% level of significance. Total soluble solids increased from an initial level of $12.43^{\circ}$Bx to $12.60^{\circ}C.$ Bx on 35 days after storage in rapid CA whereas it increased to $13.07^{\circ}$ Bx in conventional CA. Ascorbic acid content of apple juice decreased insignificantly from 6.67 mg/100 mL to 5.87 mg/100 mL on 35 days after storage in rapid CA whereas in conventional CA, it decreased significantly to 5.27 mg/100 mL from its initial level.

  • PDF

급속냉각·가열장치에 따른 사출성형품의 휨에 관한 연구 (A Study on the Warpage of Injection Molded Parts for the rapid Cooling and Heating Device)

  • 이민;김태완
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5074-5081
    • /
    • 2015
  • 플라스틱 제품의 휨을 개선하기 위한 방법은 사출성형 공정에서 일어나는 불균일한 냉각을 균일하게 만들어 플라스틱 제품의 잔류응력을 제거하는 방법이다. 본 연구는 균일한 냉각을 위하여 펠티에 소자를 사용하여 급속가열 냉각 장치를 개발하였다. 급속냉각 가열 장치(RCHD)를 제작하여 전통적인 수냉 장치(TWCD)방식과 급속냉각 가열 장치방식에 따른 휨을 비교 분석하였고, 비결정성 수지인 ABS 수지를 사용하였다. 사출성형 조건인 보압시간, 금형온도, 냉각시간, 보압에 따라 휨의 변화량을 측정 비교하였고, 비결정성 ABS 수지에서 급속가열 냉각 장치 냉각방식이 전통적인 수냉방식 보다 휨이 더 적게 발생하고, 위의 결과들로 보아 조금 더 균일하게 냉각되는 것을 알 수 있었다. ABS 폴리머의 분포 상태를 SEM 사진을 통해서 확인하였다. 전통적인 수냉방식은 폴리머의 분포상태가 조밀하게 분포되어 있고, 급속냉각 가열 방식은 전통적인 수냉방식 보다 넓게 분포되어 있었다. 이것은 냉각이 균일하게 이루어지고, 금형의 온도가 서서히 진행되면서 폴리머의 입자가 커지게 되는데, 이것은 내부응력이 줄어든 것을 의미한다.

CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각 (Rapid cooling of injection mold for high-curvature parts using CO2 cooling module)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

급속가열냉각장치에 의한 금속성 안료 사출성형 (A Study on Plastic Injection Molding of a Metallic Resin Pigment using a Rapid Heating and Cooling System)

  • 이규상;진동현;곽재섭
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.87-92
    • /
    • 2015
  • The injection molding process is widely used in the production of most plastic products. In order to make metal-colored plastic products like those found in modern luxury home alliances, metallic pigments are mixed with a basic resin material for injection molding. However, process control for metal-colored plastic products is extremely difficult due to the non-uniform melt flow of the metallic resin pigments. In this study, the effect of process parameters on the quality of a metal-colored plastic product is evaluated. A rapid mold cooling method using a compressed cryogenic fluid is also proposed to decrease the content of undesired compounds within the plastic product.

수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가 (Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage)

  • 이정민;박종철;구대서;정동유;윤세훈;백승우;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.