• 제목/요약/키워드: Rapid Prototyping and Manufacturing

검색결과 194건 처리시간 0.035초

복합재 약물전달 시스템의 제작 및 체외 환경 특성 평가 (Manufacturing and in vitro Characterization of Composite Drug Delivery System (DDS))

  • 추원식;정석용;박정빈;안성훈;이재훈;지상철
    • Composites Research
    • /
    • 제21권3호
    • /
    • pp.18-23
    • /
    • 2008
  • 쾌속 조형(Rapid Prototyping; RP) 기술은 다양한 분야에서 활용되고 있다. 본 연구에서는 RP 기술을 이용한 나노복합재 적층장치(Nano Composite Deposition System, NCDS)를 사용하여 이식 가능한 약물전달시스템을 제작하였다. 약물전달시스템 복합재는 약물 입자로 5-fluorouracil (5-FU)를 사용하였으며, 생분해 고분자 매트릭스로 PLGA85/15를 사용하였다. 제작된 약물전달시스템은 넓은 표면적을 가질 수 있도록 지지체(scaffold) 형상으로 제작되었으며, in vitro 환경에서의 약물방출실험이 수행되었다. 약물방출제어를 위하여 생체적합재료인 수산화아파타이트(Hydroxyapatite, HA)를 약물-고분자 복합재에 첨가하였다. 약 50일간의 방출실험을 통하여 약물방출의 가능성을 보임을 확인하였다.

금속분말의 레이저 공정 기술 (Laser Processing Technology using Metal Powders)

  • 장정환;문영훈
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

자동 충진 공정을 이용한 쾌속 제작 공정 개발 (Development of Rapid Manufacturing Process by Machining with Automatic Filling)

  • 신보성;양동열;최두선;이응숙;황경현
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.174-178
    • /
    • 2001
  • In order to reduce the lead-time and cost, recently the technology of rapid protoyping and manufacturing(RPM)has been widely used. Machining process is still considered as one of the effective RPM methods that have been developed and currently available in the industry. It also offers practical advantages such as precision and versatility. Some considerations are still required during the machining process. One of the most important points is fixturing. There should be an effective method of fixturing since the fixturing time depends on the complexity of geometry of the part to be machined. In this paper, the rapid manufacturing process has been developed combining machining with automatic filling. The proposed fixturing technique using automatic filling can be widely applicable to free surface type of product such as a fan. In the filling stage, remeltable material is chosen for the filling process. An automatic set-up device attachable to the table of the machine has also been developed. The device ensures the quality during a series of machining operations. This proposed process has shown to be a useful method to manufacture the required products with the reduced the response-time and cost.

  • PDF

고속시작 시스템을 위한 삼각형 기반 형상모델링 (Triangle Based Geometric modeling for rapid Prototyping CAM system)

  • 채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.587-591
    • /
    • 1996
  • Usually triangular patches are used to transfer geometric shape in Rpaid Prototyping CAM system. STL, a list of triangles, is de facto in RP industry. Because STL has no topology data, it can cause errornous results. So, STL should be verified before using. After adding support structures to anchor the part to the platform and to prevent sagging or distortion, slicing and layer by layer manufacturing process are done. But triangular patch is surface model and cannot provide dufficient information on geometry in the above processes. So, geometric modeling is necessary in verifying STL, adding support structures, and slicing. It is natural that triangle based modeling is the best when traingular patches are used as input. Considering support structures, solid and faces coexist in RP process. Therefore non-manifold modeler is required. In this study, triangle based non-manifold geometric modeling is proposed for RP system consitent with STL input.

  • PDF

Feasibility study on developing productivity and quality improved three dimensional printing process

  • Lee, Won-Hee;Kim, Dong-Soo;Lee, Taik-Min;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2160-2163
    • /
    • 2005
  • Solid freeform fabrication (SFF) technology plays a major role in industry and represents a reasonable percentage of industrial rapid prototyping/tooling/manufacturing (RP/RT/RM) development applications. However, SFF technology still has long way to progress to achieve satisfactory process speed, surface finish and overall quality improvement of its application. Today, three dimensional printing (3DP) technique that is one of SFF technology is receiving many interests, and is applied by various fields. It can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. However, need long curing time after manufacture completion. And it must do post-processing process necessarily to heighten strength of objects because strength of fabricated objects is very weak. Therefore, in this study, we proposed an improved 3DP process that can solve problems of conventional 3DP process. The general 3DP process is method to spout binder simply through printer head on powder, but proposed process is method to cure jetted UV resin by UV lamp after jet UV resin using printhead on powder. The hardening of resin is achieved strongly at early time by UV lamp in proposed method. So, the proposed process can fabricate three dimensional objects with high speed without any post-processing.

  • PDF

3 차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구 (A study of correction dependent on process parameters for printing on 3D surface)

  • 송민섭;김효찬;이상호;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.749-752
    • /
    • 2005
  • In the industry, three-dimensional coloring has been needed for realistic prototype from rapid prototyping. Z-corporation developed a 3D printer which provides three-dimensional colored prototype. However, the existing process cannot be adopted to models from other rapid prototyping process. In addition, time and cost for manufacturing colored prototype still remain to be improved. In this study, a new coloring process using ink-jet head is proposed for color printing on three-dimensional prototype surface. Process parameters such as the angle and the distance between ink-jet nozzle and the three-dimensional surface should be investigated from experiments. The correction matrix according to sloped angle to minimize the distortion of 2D image was proposed by analysis of printing error. Therefore, approximated method for angle and discrete length according to the radius of curvature for printing on the curved surface was proposed. By printing image on the doubly curved surface, the method was verified. As a practical example, helmet was chosen for printing images on the curved surface. The character images were applied with approximated method for angle and discrete length and was printed on the helmet surface.

  • PDF

Densification Kinetics of Steel Powders during Direct Laser Sintering

  • Simchi, Abdolreza;Petzoldt, Frank
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.250-251
    • /
    • 2006
  • It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.

  • PDF

직접식 금속 적층공정을 이용한 금속 시제품 제작 (Solid Freeform Fabrication of Metal Prototype Using Direct Metal Shaping Process)

  • 김재도;박진용;조명우
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.56-62
    • /
    • 2000
  • A fast and precise technique to make 3-dimensional object which is called direct metal shaping process is processed. It is very useful technique in design and inspection. Using this developed system, a solid object is made. In experiment, test parts are built by varying three factors, laser power, scan path, scan speed. This process used device, which is different from the widely used in rapid prototyping in that powder feeding device is used. Spraying powder directly at the focused laser beam and then three dimensional object is made by the deposit of melted metal powder. The optimum scanning path is found to be zigzag path, which had little thermal affection on base metal. As a result of these experiments, it was found that optimum scanning speed is 15mm/sec laser power is 50W. This constructed 3-dimensional object could be used in mold manufacturing directly.

  • PDF

고속적층조형법에서 최적 적층방향의 자동결정 (The Automatic Determination of the Optimal Build-Direction in Rapid Prototyping)

  • 채희창
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.150-155
    • /
    • 1997
  • Rapid Prototyping(RP) is the technique which is used to make prototypes or functional parts directly using the 3-D solid data. Before building the prototype, several processes such as transfering 3D data from CAD system(STL) determination of build-direction, adding support structure and slicing are required. Among the above processes. determination of build-direction is the target of this study. The build direction is determined by many factors according to the objective of the user, like part accuracy, number of support structure, build time, amount of trapped volume, etc, But it is not easy to determine the build-direction because there are many factors and some factors have dependent properties with one another. So, in this study the part accuracy, the number of support structures and build time are considered as the main factor to determine the optimal build-direction. To determine the optimal build-direction for increasing part accuracy, sum of projected area which caused stairstepping effect was considered. The less the projected area is the better part accuracy is About the optimal build-direction to minimize the amount of support structure, sum of projected area of facets that require support structures was considered. About the build time, we considered the minimum height of part we intended. About the build time, we considered the minimun height of part we intended to make.

  • PDF

3D 프린터를 사용한 정밀 스테이지의 제작 (Fabrication of Piezo-Driven Micropositioning Stage using 3D printer)

  • 정호제;김정현
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.277-283
    • /
    • 2014
  • This paper presents the design, optimization and fabrication of a piezo driven micro-positioning stage constructed using a 3D-printer. 3D printing technology provides many advantageous aspects in comparison to traditional manufacturing techniques allowing more rapid prototyping freedom in design, etc. Micro-positioning stages have traditionally been made using metal materials namely aluminum. This paper investigates the possibility of fabricating stages using ABS material with a 3D printer. CAE simulations show that equivalent motion amplification can be achieved compared to a traditional aluminum fabricated stage while the maximum stress is 30 times less. This leads to the possibility of stages with higher magnification factors and less load on the driving piezo element. Experiment results agree with the simulation results. A micro-position stage was fabricated using a 3D printer with ABS material. The motion amplification is very linear and 50 nm stepping was demonstrated.