• Title/Summary/Keyword: Rapid Hardening Mortar

Search Result 27, Processing Time 0.021 seconds

An Experimental Study on the Properties of Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 사용한 보수용 초속경 모르타르의 특성에 관한 실험적 연구)

  • Ahn, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Building structures are generally large in size and have a long life, and the construction of such structures requires the investment of a huge amount of money and social infrastructure. Furthermore, building structures are closely related to people's life. Recently, however, the rapid development of society has been worsening air pollution, which is in turn accelerating the degradation of building structures. Thus, the safety of building structure is emerging as a critical issue. To cope with this problem, the government enacted "The Special Act on Safety Control for Infrastructure" but we need engineers' higher concern over the maintenance and reinforcement of existing structures. Recently researches are being made actively on repair mortar using ultra rapid hardening cement for recovering the performance of structures. The present study conducted an experiment on the basic physical properties of ultra rapid hardening mortar for repairing and reinforcing building structures using magnesia cement and mono-ammonium phosphate. In the experiment, we changed the water-cement ratio and carried out replacement at different ratio of MAP/MgO(%). We used retarder to have working life, and made comparative analysis through evaluating working life and fluidity and measuring strength by age.

Effect of Curing Temperature on Mechanical Properties of Polymer Mortar for Urgent Repairing (양생온도가 긴급 보수용 폴리머 모르타르의 역학적 특성에 미치는 영향)

  • Cho, Yong In;Hong, Ki Nam;Kim, Min Sung;Park, Jae Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.109-116
    • /
    • 2016
  • This study presents the results of experiments to investigate the effect of polymer type and curing temperature on the mechanical properties of polymer mortar. Setting time of two types of polymers, hardening-delayed polymer(HDP) and rapid hardening polymer(RHP), was tested to check the working time. Additionally, flexural strength, compressive strength, and splitting tensile strength was investigated for mortars using these polymers. From these results, it was confirmed that, irrespective to curing temperature, RHP mortar at the curing age of 24h develops the similar mechanical properties to maximum properties and HDP mortar is more sensitive to the curing temperature. In addition, it should be noted that RHP mortar and HDP mortar are suitable in winter and summer, respectively.

Effects of H$_2$BO$_3$ on the Hydration of $C_4$A$_3$S Blended Rapid Hardign Cement (CSA계 혼합 시멘트 수화에 미치는 Boric Acid 의 영향)

  • Yoo, K.S.;Lee, K.H.;Kim, N.H.;Lee, Y.S.;Hun, K.H.;Lee, J.W.;Yim, Going
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.583-593
    • /
    • 1998
  • The study was carried on the influence of {{{{ { {H }_{3 }BO }_{3 } }} for hydration of blended rapid hardening cement which was composed of {{{{ {{C }`_{4 } ^{ }A }_{3 } }} Adding {{{{ { {H }_{3 }BO }_{3 } }} to the mortar of blended rapid hardening cement delayed the setting time and increased the flow of the mortar. When {{{{ { {H }_{3 }BO }_{3 } }} added to the blended rapid hardening cement mono-sulfate was produced rather than ettringite and the existing time of monosulfate also prolonged. After hours monosulfate was converted to ettringite through being producted like gels. This monosulfate phase in-fluences on the setting time and flow of fresh mortar.

  • PDF

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.

Study on the Development of Super-High-Early-Strength Mortar Using the Hardening catalyst and High early strength cement (조강시멘트를 사용한 초조강 모르타르 개발에 관한 연구)

  • Cho, In-Sung;Hur, Yeon-Ok;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.217-219
    • /
    • 2012
  • In this study, the experiment was conducted in the level of mortar as one of the basic studies on pre-cast concrete which acceleration curing is not done. This study has the purpose to develop the strength of mortar into 20MPa within 6 hours in the condition of room temperature using admixtures which can accelerate C3S hydration reaction. In this experiment, W/C was fixed into 20%, PCE which can stimulate C3S was used as an accelerating admixture. From the results of this experiment, maximum content of accelerating admixture was 1%. Also, as more than 20MPa was measured through 6-hour compressive strength, it can be known that strength can be developed without steam-curing.

  • PDF

Quality, Setting and Hardening Properties of Rapid Set Accelerators (숏크리트용 급결제의 품질, 응결 및 경화특성)

  • 김진철;류종현;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.323-328
    • /
    • 2002
  • Rapid set accelerators are widely used in tunnel construction, however quality criteria of and dosage are not well established. The density and solid content of admixtures, setting time and compressive strength of paste and mortar with admixtures were investigated to establish the quality criteria. While the early strength of mortar with sodium-silicate, sodium-aluminate and calcium aluminate type admixtures that have high alkali content are very high, but long-term strength are low. Aggregates of shotcrete has to be carefully selected. Sodium-silicate type admixture need longer setting time than the others.

  • PDF

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Mechanical Properties and Field Implementation of Floor Mortar Incorporated with VAE Polymer (VAE 폴리머를 이용한 모르타르 바닥재의 역학적 특성과 현작 적용성)

  • Bang, Jin-Wook;Lee, Sun-Mok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, the importance of the industrial warehouse floor has been increasing due to the development of the distribution and logistics industry. In this present study, an early-hardening polymer floor mortar which can compensate for the limitation of conventional cement based floor mortar regarding fluidity and long curing time was developed. In order to achieve the early-hardening of mortar characteristic ultra rapid hardening cement was used as binder. Four types of mixture proportions in accordance with the vinyl acetate ethylene(VAE) polymer contents with range from 10% to 20% and the other proto proportion without VAE polymer were designed. Mechanical experiments including the fluidity test, compressive strength test, bending test, bond test, and abrasion test were conducted for all mixture proportions. From the flow test result, it was possible to achieve the high flow with 250 mm by controlling the amount of superplasticizer. The incorporation of VAE polymer was found to affect the compressive strength reduction, however, the flexural strength was higher than that of the proto mixture, and it was evaluated to increase the compressive strength / flexural strength ratio. Moreover, at least 2.6 times higher bond strength and more than 4 times higher abrasion resistance were secured. From the mechanical experiments results, the optimum mixing ratio of the VAE polymer was determined to be 10%. As a result of application and monitoring, it shows that it has excellent resistance to cracking, discoloration, impact, and scratch as well as bond performance compared to the cement based floor mortar.

An Experimental Study for Determination of the Paved Track Structure (포장궤도 구조 결정을 위한 실험적 연구)

  • Shim Nak-Hoon;Lee Il-Hwa;Park Young-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1026-1032
    • /
    • 2004
  • The objective of this study is to confirm the field application of coarse aggregates technology mixtured with high strength mortar under the rail. In the present study, the field tests are performed to find the field state and aggregate gradations and the laboratory tests are performed to find the compressive strength of the pre packed concrete cylinder specimens and the core specimens obtained at the field.

  • PDF