• Title/Summary/Keyword: Rapid Cooling System

Search Result 111, Processing Time 0.024 seconds

Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis (열-소성 연계 해석을 이용한 자동차 로어암 부품 개발)

  • Son, H.S.;Kim, H.G.;Choi, B.K.;Cho, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas (공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성)

  • Oh, Hyun-Cheol;Jung, Jae-Hee;Park, Hyung-Ho;Ji, Jun-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

A Study on System for Real-time Measurement of Welding Distortion (실시간 용접변형 계측을 위한 시스템에 관한 연구)

  • Jeong, Jae-Won;Kim, Ill-Soo;Kim, In-Ju;Son, Sung-Woo;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.62-67
    • /
    • 2009
  • Welding deformation during the assembly process is affected by not only local shrinkage due to rapid heating and cooling, but also root gap and misalignment between parts to be welded. Therefore, the prediction and control of welding deformation have become of critical importance. In this study, it was focused on the development of the 3-axis apparatus for real-time measurement of the welded deformation. To achieve the objective, a D-H algorithm has been carried out to check the behavioral and performance evaluation for the developed robot. The sequence experiments were taken the base materials of $400{\times}200{\times}4.5mm$ plate for butt welding. The real-time experimental measurements are in good agreement with the measured results.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

A Study on Warm Disease by Yexiangyan of Wangshixiong's "Wenrejingwei" (왕사웅(王士雄) "온열경위(溫熱經緯)" 중(中) 섭향암(葉香巖)의 외감온열(外感溫熱)에 관한 연구(硏究))

  • Ahn, Joon-Mo;Song, Ji-Chung;Song, Il-Gon;Moon, Young-Ok;Chang, Kyung-Eun;Keum, Kyung-Soo
    • Journal of the Korean Institute of Oriental Medical Informatics
    • /
    • v.16 no.1
    • /
    • pp.9-73
    • /
    • 2010
  • This study is to focus on Ye Tian-Shi's Treatise on Externally Contracted Heat Disease Pattern Identification of warm disease as viewed through the concept of the various warm diseases characterized by rapid onset and shifts, pronounced heat signs, and a tendency to form dryness and damage eum. Finally, when it reaches blood and causes depletion and frenetic movement, treatment involves cooling and dissipating the blood." These lines represent the general outline of the four-aspect pattern identification and treatment system of the doctrine of warm diseases.

  • PDF

A Study on the Characteristics of Electric Power Consumption of University (종합대학의 전력에너지 부하 특성에 관한 연구)

  • Lee, Choun-Mi;Kim, Ju-Young;Hong, Won-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.336-341
    • /
    • 2008
  • For the last half a century, Korea has been experienced rapid economic growth and industrialization development, however they cause serious problems that environment pollution and energy shortage are appeared, and the biggest problem that we are now confronted are required solutions through all over the world. Now, Korea's energy consumption is the 10th in the whole world. Among them, energy for buildings, about 25% in the whole Energy which spend in Korea, is very serious. Especially, the energy consumption of school buildings which have heating & cooling system according to improvements of educational environment are rapidly increasing. These features are explicit in the University, Because it has lots of colleges and facilities for lecture, experiment, and research. Especially, electric power consumption account for 75 percent of energy consumption in educational institutions. Accordingly, it is important to understand and analyze the pattern of electricity energy consumption which is used. This study attempts to appoint the place which is one of university and to investigate the characteristics of energy consumption like electricity, gas, oil.

  • PDF

Analysis of Performance of Cross-Flow Fan with Various Rear Guiders (리어가이더 형상변화에 따른 횡류홴 성능해석)

  • Kim, Dong-Won;Lee, Jun-Hwan;Park, Seong-Gwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2076-2082
    • /
    • 2003
  • A cross-flow fan is widely used on many industrial fields: mining industry, automobile and home appliances, etc. The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between 30% and 40% because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the lower flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow field against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for investigating the flow characteristics in a cross-flow fan including the impeller, the rearguider and the stabilizer. Especially, various types of rearguiders are estimated by numerical and experimental methods to insure the stable operation in the region of lower flow rate. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard ${\kappa}-{\varepsilon}$ turbulence model. ASHRAE standard fan tester is also used to estimate the performance of the modeled crossflow fan.

  • PDF

High resolution heterodyne interferometric technique with AOM for measuring the thermal expansion (음향광변조기를 이용한 고분해능의 헤테로다인 간섭식 열팽창 측정기술)

  • 최병일;이상현;김종철;임동건
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.530-536
    • /
    • 2002
  • The accurate measurements of thermal expansion coefficients is one of the most important techniques required not only in material science but also in industries. A high precision interferometric dilatometer, using acoustic optical modulator, has been constructed and its performance has been tested. The system consists of a double-path optical heterodyne interferometer and a radiant heating furnace. This provides highly accurate length measurement, and allows rapid heating and cooling method for the specimen. A three longitudinal mode frequency stabilized He-Ne laser, using the secondary beat frequency, is constructed. Its stability is found to be $5{\times}10^{-9}$. The uncertainty in the length measurement is estimated to be of nanometer order in the range between room temperature to 1100 K.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

A Study on Fracture Toughness with Thermal Aging in CF8M/SA508 Welds (CF8M과 SA508 용접재의 열화에 따른 파괴인성에 관한 연구)

  • Woo Seung-Wan;Choi Young-Hwan;Kwon Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1173-1178
    • /
    • 2006
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are according to the process in the thermal notch is created in the heat affected zone(HAZ) of CF8M and deposited zone. From the experiments, the $J_{IC}$ value notched in HAZ of CF8M presented a rapid decrease up to 300 hours at $430^{\circ}C$ and slowly decreased according to the process in the thermal aging time. Also, the $J_{IC}$ value presented a lower value than that of the CF8M base metal. And, the $J_{IC}$ of the deposited zone presented the lowest value of all other cases.