• Title/Summary/Keyword: Rankine Steam Cycle

Search Result 28, Processing Time 0.019 seconds

Study on the Basic Design of Large Scale Solar Thermal Power Plant System (대규모 태양열 발전시스템 기본설계 특성 분석)

  • Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Jin-Su;Lee, Sang-Nam;Yu, Chang-Kyun;Yun, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.576-579
    • /
    • 2006
  • This paper describes characteristics and procedure of the basic design of large scale solar thermal power plant system. The evaluation is based on the operating data of CESA-I, solar central receiver plant. In order to evaluate the solar irradiation on the receiver, it is necessary to calculate the amount of thermal energy consumption at steam turbine and storage system in the STPPS. Especially, it is need to take into account of the storage and operating time to design a plant efficiently. In addition, basic design is performed for the CESA-I using the software tool of THERMOFLEX program. Based on the results, It is at lowed to use the program to investigate detail performance of each units of the STPPS by varying the operating conditions.

  • PDF

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.402-410
    • /
    • 2012
  • A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.

The Effect of Thermal Diffusivity on the System Efficiency of a DOTEC Cycle

  • Yoon, Jung-In;Choi, Kwang-Hwan;Kwakye-Boateng, Patricia;Son, Chang-Hyo;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2013
  • In this study, the effect of deep ocean condenser inlet temperature ($T_{DOI}$), condenser inlet pressure ($P_{cond,in}$), and thermal diffusivity on system efficiency of some selected refrigerants was analyzed using HYSYS. The proposed DOTEC cycle is similar to the reheat Rankine cycle but eliminates irreversibilities by bleeding a fraction of the steam between certain stages of the turbine. The evaporator inlet mass flow rate, inlet temperature of turbine 1, turbine efficiency and inlet and outlet temperature of heat source were imposed. The working fluids considered are sorted in ascending order of their molecular weights as R717, R600a and R152a. Results indicated that a fluid with a lower boiling point temperature like R717 needs a corresponding high heat source and/or evaporator inlet pressure. Also, the response of thermal diffusivity closely follows the change in TDOI as an increase in $T_{DOI}$ increases $P_{cond,in}$ which reduces thermal diffusivity and system efficiency. Furthermore, the fluid with the nominal boiling point temperature has the highest efficiency with efficiency decreasing with an increase in TDOI.

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

Feasibility Study on Modified OTEC (Ocean Thermal Energy Conversion) by Plant Condenser Heat Recovery (발전소 복수기 배열회수 해양온도차 발전설비 적용타당성 검토)

  • Jung, Hoon;Kim, Kyung-Yol;Heo, Gyun-Young
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • The concept of Ocean Thermal Energy Conversion (OTEC) is simple and various types of OTEC have been proposed and tried. However the location of OTEC is limited because OTEC requires $20^{\circ}C$ of temperature difference as a minimum, so most of OTEC plants were constructed and experimented in tropical oceans. To solve this we proposed the modified OTEC which uses condenser discharged thermal energy of existing fossil or nuclear power plants. We call this system CTEC (Condenser Thermal Energy Conversion) as this system directly uses $32^{\circ}C$ partially saturated steam in condenser instead of $20{\sim}25^{\circ}C$ surface sea water as heat source. Increased temperature difference can improve thermal efficiency of Rankine cycle, but CTEC should be located near existing plant condenser and the length of cold water pipe between CTEC and deep cold sea water also increase. So friction loss also increases. Calculated result shows the change of efficiency, pumping power, net power and other parameters of modeled 7.9 MW CTEC at given condition. The calculated efficiency of CTEC is little larger than that of typical OTEC as expected. By proper location and optimization, CTEC could be considered another competitive renewable energy system.

Evaluation of Tensile Property of Austenitic Alloys Exposed to High-Temperature S-CO2 Environment (고온 S-CO2 환경에 노출된 오스테나이트계 합금의 인장특성 평가)

  • Kim, Hyunmyung;Lee, Ho Jung;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1415-1420
    • /
    • 2014
  • Super-critical $CO_2$ ($S-CO_2$) Brayton cycle has been considered to replace the current steam Rankine cycle in Sodium-cooled Fast Reactor (SFR) in order to improve the inherent safety and thermal efficiency. Several austenitic alloys are considered as the structural materials for high temperature $S-CO_2$ environment.. Microstructural change after long-term exposure to high temperature $S-CO_2$ environment could affect to the mechanical properties. In this study, candidate materials (austenitic stainless steels and Alloy 800HT) were exposed to $S-CO_2$ to assess oxidation resistance and the change in tensile properties. Loss of ductility was observed for some austenitic stainless steels even after 250 h exposure. The contribution of $S-CO_2$ environment on such changes was analyzed based on the characterization of the surface oxide and carburization of the materials in which 316H and 800H showed different oxidation behaviors.

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND)

  • Kim, Ho Sik;NO, Hee Cheon;Jo, YuGwon;Wibisono, Andhika Feri;Park, Byung Ha;Choi, Jinyoung;Lee, Jeong Ik;Jeong, Yong Hoon;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.293-305
    • /
    • 2015
  • In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 $MW_{th}$ and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.