• Title/Summary/Keyword: Rank algorithm

Search Result 283, Processing Time 0.021 seconds

Vision-Based Roadway Sign Recognition

  • Jiang, Gang-Yi;Park, Tae-Young;Hong, Suk-Kyo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • In this paper, a vision-based roadway detection algorithm for an automated vehicle control system, based on roadway sign information on roads, is proposed. First, in order to detect roadway signs, the color scene image is enhanced under hue-invariance. Fuzzy logic is employed to simplify the enhanced color image into a binary image and the binary image is morphologically filtered. Then, an effective algorithm of locating signs based on binary rank order transform (BROT) is utilized to extract signs from the image. This algorithm performs better than those previously presented. Finally, the inner shapes of roadway signs with curving roadway direction information are recognized by neural networks. Experimental results show that the new detection algorithm is simple and robust, and performs well on real sign detection. The results also show that the neural networks used can exactly recognize the inner shapes of signs even for very noisy shapes.

  • PDF

The Study on the Ranking Algorithm of Web-based Sear ching Using Hyperlink Structure (하이퍼링크 구조를 이용한 웹 검색의 순위 알고리즘에 관한 연구)

  • Kim, Sung-Hee;O, Gun-Teak
    • Journal of Information Management
    • /
    • v.37 no.2
    • /
    • pp.33-50
    • /
    • 2006
  • In this paper, after reviewing hyperlink based ranking methods, we saw various other parameters that effect ranking. Then, We analyzed the PageRank and HITS(Hypertext Induced Topic Search) algorithm, which are two popular methods that use eigenvector computations to rank results in terms of their characteristics. Finally, google and Ask.com search engines were examined as examples for applying those methods. The results showed that use of Hyperlink structure can be useful for efficiency of web site search.

Identifying Influential People Based on Interaction Strength

  • Zia, Muhammad Azam;Zhang, Zhongbao;Chen, Liutong;Ahmad, Haseeb;Su, Sen
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.987-999
    • /
    • 2017
  • Extraction of influential people from their respective domains has attained the attention of scholastic community during current epoch. This study introduces an innovative interaction strength metric for retrieval of the most influential users in the online social network. The interactive strength is measured by three factors, namely re-tweet strength, commencing intensity and mentioning density. In this article, we design a novel algorithm called IPRank that considers the communications from perspectives of followers and followees in order to mine and rank the most influential people based on proposed interaction strength metric. We conducted extensive experiments to evaluate the strength and rank of each user in the micro-blog network. The comparative analysis validates that IPRank discovered high ranked people in terms of interaction strength. While the prior algorithm placed some low influenced people at high rank. The proposed model uncovers influential people due to inclusion of a novel interaction strength metric that improves results significantly in contrast with prior algorithm.

Efficient Coverage Algorithm based-on Grouping for Autonomous Intelligent Robots (자율 지능형 로봇을 위한 그룹화 기반의 효율적 커버리지 알고리즘)

  • Jeon, Heung-Seok;Noh, Sam-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.243-250
    • /
    • 2008
  • The coverage algorithm based on Boustrophedon path has been known to be the most efficient in places without or less obstacles If the map of an environmental area thru SLAM algorithm can be obtainable. However, the efficiency of the coverage algorithm based on Boustrophedon path drops drastically when obstacles are complex. In this paper, we propose and implement a new algorithm, which we call Group-k, that efficiently handles the complex area. The Group-k algorithm groups the obstacles and prioritizes the covering sequences with complex rank of the groups. Implementation-based experiments show about 20% improved performance when applying the nor- algorithm, compared to the Boustrophedon path algorithm.

  • PDF

An Efficient Matrix-Vector Product Algorithm for the Analysis of General Interconnect Structures (일반적인 연결선 구조의 해석을 위한 효율적인 행렬-벡터 곱 알고리즘)

  • Jung, Seung-Ho;Baek, Jong-Humn;Kim, Joon-Hee;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.56-65
    • /
    • 2001
  • This paper proposes an algorithm for the capacitance extraction of general 3-dimensional conductors in an ideal uniform dielectric that uses a high-order quadrature approximation method combined with the typical first-order collocation method to enhance the accuracy and adopts an efficient matrix-vector product algorithm for the model-order reduction to achieve efficiency. The proposed method enhances the accuracy using the quadrature method for interconnects containing corners and vias that concentrate the charge density. It also achieves the efficiency by reducing the model order using the fact that large parts of system matrices are of numerically low rank. This technique combines an SVD-based algorithm for the compression of rank-deficient matrices and Gram-Schmidt algorithm of a Krylov-subspace iterative technique for the rapid multiplication of matrices. It is shown through the performance evaluation procedure that the combination of these two techniques leads to a more efficient algorithm than Gaussian elimination or other standard iterative schemes within a given error tolerance.

  • PDF

Topic Sensitive_Social Relation Rank Algorithm for Efficient Social Search (효율적인 소셜 검색을 위한 토픽기반 소셜 관계 랭크 알고리즘)

  • Kim, Young-An;Park, Gun-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In the past decade, a paradigm shift from machine-centered to human-centered and from technology-driven to user-driven has been witnessed. Consequently, Social search is getting more social and Social Network Service (SNS) is a popular Web service to connect and/or find friends, and the tendency of users interests often affects his/her who have similar interests. If we can track users' preferences in certain boundaries in terms of Web search and/or knowledge sharing, we can find more relevant information for users. In this paper, we propose a novel Topic Sensitive_Social Relationship Rank (TS_SRR) algorithm. We propose enhanced Web searching idea by finding similar and credible users in a Social Network incorporating social information in Web search. The Social Relation Rank between users are Social Relation Value, that is, for a different topics, a different subset of the above attributes is used to measure the Social Relation Rank. We observe that a user has a certain common interest with his/her credible friends in a Social Network, then focus on the problem of identifying users who have similar interests and high credibility, and sharing their search experiences. Thus, the proposed algorithm can make social search improve one step forward.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.

Joint Estimation Methods of Carrier Offset and Low-rank LMMSE Channel Estimation for MB-OFDM System (MB-OFDM 시스템을 위한 Low-rank LMMSE 채널 추정 및 주파수 옵셋 추정 결합 기법)

  • Shin, Sun-Kyung;Nam, Sang-Kyun;Sung, Tae-Kyung;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1296-1302
    • /
    • 2007
  • In this paper, we propose joint estimation methods of carrier offset and channel estimation for MB-OFDM system with low complexity. The proposed methods estimate the channel by using low-rank LMMSE channel estimation which reduces the system complexity by applying the optimal number of rank to evaluate the frequency offset and additionally using the simple algorithm using the auto-correlation property of the estimated channel. We simulate the proposed algorithms under the IEEE 802.15 TG3a UWB channel model.

Identification of Heterogeneous Prognostic Genes and Prediction of Cancer Outcome using PageRank (페이지랭크를 이용한 암환자의 이질적인 예후 유전자 식별 및 예후 예측)

  • Choi, Jonghwan;Ahn, Jaegyoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.