• Title/Summary/Keyword: Ranging Code

Search Result 102, Processing Time 0.025 seconds

Frequency Offset Estimation for IR-UWB Packet-Based Ranging System (IR-UWB 패킷 기반의 Ranging 시스템을 위한 주파수 옵셋 추정기)

  • Oh, Mi-Kyung;Kim, Jae-Young;Lee, Hyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1184-1191
    • /
    • 2009
  • We aim at frequency offset estimation for IEEE 802.15.4a ranging systems, where an impulse-radio ultra-wideband (IR-UWB) signal is exploited, By incorporating the property of the ternary code in the preamble, we derive a simplified maximum-likelihood (ML) estimation of the frequency offset. In addition, a closed form estimator for implementation is investigated. Simulation results and theoretical analysis verify our estimators in IEEE 802.15.4a IR-UWB packet-based ranging systems.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Analysis of Coarse Acquisition Code Generation Algorithm in GPS System (GPS 시스템의 C/A 부호 생성 알고리듬의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, the coarse acquisition code (C/A code), for civil navigation, of the ranging codes for Global Positioning System (GPS) is studied, simulated and analyzed by using Matlab. We can see with the simulation results that the correctness of the method and feasibility, which is at simulation platform to further study on the real environment of GPS signal, can be confirmed. With using this results, we think, the complexity of tracking the satellite signal environment can be captured, and the performance of satellite receiver will be improved.

Reckoning of the Agricultural Vehicle in the Field Using Acoustic Ranging

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.4-94
    • /
    • 2001
  • An acoustic ranging system was applied for reckoning the location of an agricultural vehicle in the field. The system has a number of fixed stations and a mobile station such as an agricultural vehicle. The mobile station comprises a radio frequency modulator-demodulator (RF MODEM), a buzzer, and a personal computer. The fixed station comprises an (RF MODEM), a microphone, an amplifier for the microphone, and a personal computer with a soundboard. The mobile station transmits a 7-bit ASCII code and, activates the buzzer simultaneously. The propagation delay time at the fixed station is caused by the difference ...

  • PDF

SBAS SIGNAL SYNCHRONIZATION

  • Kim, Gang-Ho;Kim, Do-Yoon;Lee, Taik-Jin;Kee, Changdon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.309-314
    • /
    • 2006
  • In general DGPS system, the correction message is transferred to users by wireless modem. To cover wide area, many DGPS station should be needed. And DGPS users must have a wireless modem that is not necessary in standalone GPS. But SBAS users don't need a wireless modem to receive DGPS corrections because SBAS correction message is transmitted from the GEO satellite by L1 frequency band. SBAS signal is generated in the GUS(Geo Uplink Subsystem) and uplink to the GEO satellite. This uplink transmission process causes two problems that are not existed in GPS. The one is a time delay in the uplink signal. The other is an ionospheric problem on uplink signal, code delay and carrier phase advance. These two problems cause ranging error to user. Another critical ranging error factor is clock synchronization. SBAS reference clock must be synchronized with GPS clock for an accurate ranging service. The time delay can be removed by close loop control. We propose uplink ionospheric error correcting algorithm for C/A code and carrier. As a result, the ranging accuracy increased high. To synchronize SBAS reference clock with GPS clock, I reviewed synchronization algorithm. And I modified it because the algorithm didn't consider doppler that caused by satellites' dynamics. SBAS reference clock synchronized with GPS clock in high accuracy by modified algorithm. We think that this paper will contribute to basic research for constructing satellite based DGPS system.

  • PDF

Modal rigidity center: it's use for assessing elastic torsion in asymmetric buildings

  • Georgoussis, George K.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.163-175
    • /
    • 2010
  • The vertical axis through the modal center of rigidity (m-CR) is used for interpreting the code torsional provisions in the design of eccentric multi-story building structures. The concept of m-CR has been demonstrated by the author in an earlier paper and the particular feature of this point is that when the vertical line of the centers of mass at the floor levels is passing through m-CR, minimum base torsion is developed. For this reason the aforesaid axis is used as reference axis for implementing the code provisions required by the equivalent static analysis. The study examines uniform mixed-bent-type multistory buildings with simple eccentricity, ranging from torsionally stiff to torsionally flexible systems. Using the results of a dynamic response spectrum analysis as a basis for comparisons, it is shown that the results of the code static design are on the safe side in torsionally stiff buildings, but unable to predict the required strength of bents on the stiff side of systems with a predominantly torsional response. Suggestions are made for improving the code provisions in such cases.

Acquisition Performance of Tiered Polyphase Code Based GNSS Signal (계층 다상 부호 기반 위성항법 시스템의 신호획득 성능 연구)

  • Kim, Jeong-Been;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.970-972
    • /
    • 2013
  • Signal acquisition performance is evaluated for the tiered polyphase code (TPC) which is proposed as a ranging signal structure for global navigation satellite systems (GNSSs). Compared to the tiered code (TC) which is adopted in European Union's GALILEO system, the TPC shows robust performance to frequency offset in acquiring signal. Therefore the TPC should have SNR gain in signal acquisition and can reduce computational complexity in the receiver. In this paper, we compare the signal detection probability of the TC and TPC under the same receiver architecture and GALILEO E5a-I signal parameters.

Modeling and simulation of VERA core physics benchmark using OpenMC code

  • Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3388-3400
    • /
    • 2023
  • Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

Access timing offsets-resilient uplink OFDMA for satellite systems (액세스 타이밍 오차에 강한 위성 시스템 상향링크 OFDMA 기법)

  • Kim, Bong-Seok;Choi, Kwon-Hue
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • We propose a new satellite OFDMA(Orthogonal Frequency Division Multiple Access) scheme with greatly enhanced tolerance of timing offset among the users. In uplink OFDMA systems, timing misalignment among users destroys subcarrier orthogonality and thus, it degrades the performance. In order to avoid this performance degradation, the accurate processing, so called 'ranging', is required to synchronize among users. However, ranging scheme is not available in the satellite systems due to the very long round trip delay. Exploiting the property that PSW(Propoerly Scrambled Walsh-code) code has zero correlation despite ${\pm}1$ chip timing offset, the proposed OFDMA achieves MAI free performance with the timing offset up to ${\pm}1$ OFDM symbol duration for the satellite systems.