• Title/Summary/Keyword: Range-Based Volatility

Search Result 20, Processing Time 0.026 seconds

Bootstrap-Based Test for Volatility Shifts in GARCH against Long-Range Dependence

  • Wang, Yu;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.495-506
    • /
    • 2015
  • Volatility is a variation measure in finance for returns of a financial instrument over time. GARCH models have been a popular tool to analyze volatility of financial time series data since Bollerslev (1986) and it is said that volatility is highly persistent when the sum of the estimated coefficients of the squared lagged returns and the lagged conditional variance terms in GARCH models is close to 1. Regarding persistence, numerous methods have been proposed to test if such persistency is due to volatility shifts in the market or natural fluctuation explained by stationary long-range dependence (LRD). Recently, Lee et al. (2015) proposed a residual-based cumulative sum (CUSUM) test statistic to test volatility shifts in GARCH models against LRD. We propose a bootstrap-based approach for the residual-based test and compare the sizes and powers of our bootstrap-based CUSUM test with the one in Lee et al. (2015) through simulation studies.

An Empirical Study on Investment Performance using Properties of Realized Range-Based Volatility and Firm-Specific Volatility (실현범위변동성(RRV) 및 기업고유변동성의 속성과 투자성과 측정)

  • Byun, Youngtae
    • Management & Information Systems Review
    • /
    • v.33 no.5
    • /
    • pp.249-260
    • /
    • 2014
  • This paper explores the relationship between firm-specific volatility and some firm characteristics such as size, the market-to-book ratio of equity, PER, PBR, PCR, PSR and turnover in KOSDAQ market. In addition, I investigate whether portfolios with difference to realized range-based volatility and firm-specific volatility have different investment performance using CAPM and FF-3 factor model. The main findings of this study can be summarized as follows. First, firm-specific volatility have mostly positive relationship between firm-specific volatility and some firm characteristics. Second, this study found that realized range-based volatility and firm-specific volatility are positively related to expected return. It means that portfolios with high idiosyncratic volatility have significantly higher expected return than portfolios with low firm-specific volatility.

  • PDF

Forecasting Power of Range Volatility According to Different Estimating Period (한국주식시장에서 범위변동성의 기간별 예측력에 관한 연구)

  • Park, Jong-Hae
    • Management & Information Systems Review
    • /
    • v.30 no.2
    • /
    • pp.237-255
    • /
    • 2011
  • This empirical study is focused on practical application of Range-Based Volatility which is estimated by opening, high, low, closing price of overall asset. Especially proper forecasting period is what I want to know. There is four useful Range-Based Volatility(RV) such as Parkinson(1980; PK), Garman and Klass(1980; GK) Rogers and Satchell(1991; RS), Yang and Zhang(2008; YZ). So, four RV of KOPSI 200 index during 2000.5.22-2009.9.18 was used for empirical test. The emprirical result as follows. First, the best RV which shows the best forecasting performance is PK volatility among PK, GK, RS, YZ volatility. According to estimating period forcasting performance of RV shows delicate difference. PK has better performance in the period with financial crisis of sub-prime mortgage loan. if not, RS is better. Second, almost result shows better performance on forecasting volatility without sub-prime mortgage loan period. so we can say that forecasting performance is lower when historical volatiltiy is comparatively high. Finally, I find that longer estimating period in AR(1) and MA(1) model can reduce forecasting error. More interesting point is that the result shows rapid decrease form 60 days to 90 days and there is no more after 90 days. So, if we forecast the volatility using Range-Based volaility it is better to estimate with 90 trading period or over 90 days.

  • PDF

A Numerical Study on CUSUM Test for Volatility Shifts Against Long-Range Dependence (변동성 변화와 장기억성을 구분하는 CUSUM 검정통계량에 대한 실증분석)

  • Lee, Youngsun;Lee, Taewook
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.291-305
    • /
    • 2014
  • Persistence is one of the typical characteristics appearing in the volatility of financial time series. According to the recent researches, the volatility persistence may be due to either volatility shifts or long-range dependence. In this paper, we consider residual-based CUSUM tests to distinguish volatility persistence, long-range dependence and volatility shifts in GARCH models. It is observed that this test procedure achieve reasonable powers without a size distortion. Moreover, we employ AIC and BIC criteria to estimate the change points and the number of change points in volatility. We demonstrate the superiority of residual-based CUSUM tests on various Monte Carlo simulations and empirical data analysis.

Contrarian Strategy Based on Past Stock Return and Volatility (변동성을 이용한 반대투자전략에 대한 실증분석)

  • Park, Kyeong-In;Jee, Chang
    • The Korean Journal of Financial Management
    • /
    • v.23 no.2
    • /
    • pp.1-25
    • /
    • 2006
  • This paper studied the performance of momentum strategy and contrarian strategy based or past stock return ratio of Korean stock market. The comparative study shows that the volatility of stock markets that can be found the performance of momentum strategy is smaller than that of emerging stock market. Accordingly, This paper examines that the performances of momentum strategy and contrarian strategy are affected by the larger volatility in Korean stock market. Further analysis using the 6 years sub-portfolios reveals that the momentum strategy is significant only during 1980 to 1986 time period when it had the least market volatility. Additionally, we investigate whether firm-level volatility as well as market volatility influence on the performance of contrarian strategy, and figure out that the momentum strategy is significant for the portfolio composed of firms with smaller volatility for previous period, while not significant for the portfolio composed of firms with larger volatility.

  • PDF

Do the Price Limits in KOSDAQ Market change on the Volatility? (코스닥시장의 가격제한폭 확대는 변동성을 증가시키는가?)

  • Park, Jong-Hae;Jung, Dae-Sung
    • Management & Information Systems Review
    • /
    • v.33 no.2
    • /
    • pp.119-133
    • /
    • 2014
  • This Research focuses on the effect of the price limits change in KOSDAQ market change on the volatility. The sample period ranges from 22 May 2000 to 24 March 2010 for daily data. We construct two subsample periods for comparing with the effect of the change of the price limit. These limits were relaxed from 12% to 15% on March 25, 2005. The first subsample period is from 25 March 2000 to 24 March 2005. The second subsample period is from 25 March 2005. to 24 March 2010. We employee four different volatility, which are the range-based volatility of Parkinson(1980; PK), Garman and Klass(1980; GK) Rogers and Satchell(1991; RS), Yang and Zhang(2008; YZ). The empirical result as follows. The major findings are summarized as follows; First, the volatility of individual stocks in KOSDAQ market reduces significantly after the price limit change. Second, There is so high volatile especially when the volatility of stock prices is high. Third, There is no meaningful relationship between volatility and market capitalization. Fourth, the more volume stocks reduce the volatility. Our results show the volatility decreased the more large volume, the more trading amount and the high price stock.

  • PDF

Study on a Hedging Volatility Depending on Path Type of Underlying Asset Prices (기초자산의 추세 여부에 따른 헤지변동성의 결정에 관한 연구)

  • Koo, Jeongbon;Song, Junmo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.187-200
    • /
    • 2013
  • In this paper, we deal with the problem of deciding a hedging volatility for ATM plain options when we hedge those options based on geometric Brownian motion. For this, we study the relation between hedging volatility and hedge profit&loss(P&L) as well as perform Monte Carlo simulations and real data analysis to examine how differently hedge P&L is affected by the selection of hedging volatility. In conclusion, using a relatively low hedging volatility is found to be more favorable for hedge P&L when underlying asset prices are expected to be range bound; however, a relatively high volatility is found to be favorable when underlying asset prices are expected to move on a trend.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network (엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석)

  • Lee, Chang-Yong;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.