• Title/Summary/Keyword: Range of motions

Search Result 365, Processing Time 0.021 seconds

Joint Angles of Comfort for Females Based on the Psychophysical Scaling Method (심물리학적 방법을 이용한 여성의 안락 동작범위)

  • Kee, Do-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.81-93
    • /
    • 2002
  • This study aims to provide joint angles of comfort for females, based on the psychophysical scaling method. Ten female subjects participated in the experiment for measuring perceived discomfort for varying joint motions. The subjects were instructed to maintain given joint motions for a minute, and to rate their perceived discomfort for the motions during a minute's rest by using the free modulus method of the magnitude estimation. Joint angles of comfort were calculated from the regression equations based on the experimental results, in which levels of joint motions were used as independent variables and perceived discomforts as dependent variables. The results showed that joint angles of comfort for the joint motions investigated were much smaller than full range of motions for corresponding joint motions. The ratios of joint angle of comfort to its range motion for the hip were found to be smallest of all joint motions dealt with in this study, and those for the neck were the largest. In addition, comfortable joint angles for females were much smaller than those for males. It is recommended that when designing or evaluating workplaces ergonomically, different comfortable joint angles should be applied according to workers' or population's gender.

Measurement on comfort range of korean population's joint motions for designing and evaluating workplaces

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.73-82
    • /
    • 1997
  • Daily exposure to constrained body postures and deviations from neutral postures over a long period may result in discomfort as well as pains and aches in the muscles, joints, tendons, and other soft tissues. Furthermore, it was known that poor body postures are a major cause of musculoskeletal disorders in industry. Therefore, in this study, comfort ranges of joint motions were obtained as a criterion for evaluating body postures and designing workplaces ergonomically, which were bases on subjects' perceived discomfort level estimated by magnitude estimation. Nineteen healthy male subjects participated in the laboratory study. They results showed that comfort ranges of joint motions occurred in the wrist, elbow, neck, and ankle were little less than their normal range of joint motions, but those in the back(L5/S1) and hip joint were much less than their normal ones. This fact implies that the back and jip movements are more stressful than the other joints movements. It is expected that comfort ranges of joint motions can be used as a valuable guideline when designing and evaluating workplaces.

  • PDF

NONLINEAR MOTIONS IN A HANGING CABLE

  • OH, HYEYOUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.521-536
    • /
    • 2015
  • We investigate the nonlinear motions of discrete loaded cable with different periodic forcing. We present the numerical evidence of the nonlinear motions of the cable by solving initial value problems and obtaining the motions after a long time. There appeared to be various types of nonlinear oscillations over a wide range of frequencies and amplitudes for the periodic forcing term.

Wave Passage Effect on the Seismic Response of a Building considering Bedrock Shear Wave Velocity (기반암의 전단파속도를 고려한 지진파의 통과시차가 건물의 지진거동에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil-bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.

Minimum Number of Input Ground-motions to Assess Seismic Performance of Nuclear Facilities (원전시설의 내진성능평가를 위한 입력지반운동의 최소개수)

  • Hong, Kee-Jeung;Choi, Ji-Hae;Kim, Hyun-Uk;Joo, Kwang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.341-349
    • /
    • 2016
  • Currently, researches are being actively conducted in assessing seismic performance of nuclear facilities in USA and Europe. In particular, applying this technique of assessing seismic performance to design of isolation systems in nuclear power plants is being performed and then ASCE 4 Draft (2013) is being revised accordingly in the United States. In order to satisfy the probabilistic performance objectives described by seismic responses with certain confidence levels (ASCE 43, 2005), the probability distributions of these responses have to be defined. What is the minimum number of input ground-motions to obtain the probability distribution precise enough to represent the unknown actual distribution? Theoretical basis, for how to determine the minimum number of input ground-motions for given a logarithmic standard deviation to approximate the unknown actual median of the log-normal distribution within a range of error at a certain level of confidence, is introduced by Huang et al. (2008). However, the relationship between the level of confidence and the range of error is not stated in the previous study. In this paper, based on careful reviews on the previous work, the relationship between the level of confidence and the range of error is logically and explicitly stated. Furthermore, this relationship is also applied to derive the minimum number of input ground-motions in order to approximate the unknown actual logarithmic standard deviation. Several recommendations are made for determining the minimum number of input ground-motions in probabilistic assessment on seismic performance of facilities in nuclear power plants.

An Analysis of Human Motions using Video Image Processing (화상 처리기법에 의한 인체 동작분석)

  • Lee, Geun-Bu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • The object of this research is to develop an interactive computerized graphic program for graphic output of velocity, acceleration and motion range of body task reference point. Human motions can be reproduced by scanning (rate = 1/60) the vidicon image, at same time, C.O.G of body segment group, and the results are stored in an Apple II P.C. memory. The results of this study can he exteneded to simulation and reproduction of human motions for optimal task design.

  • PDF

Comparison between the Balance of Skilled and Less-Skilled Players during Successful and Failed Front Kick and Turning Side Kick Motions (태권도 품새 우수·비 우수선수 간 앞차고 몸돌아 옆차기의 성·패에 따른 균형성 비교)

  • Yoo, Si-Hyun;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 2012
  • The aim of this study is to identify the appropriate movement for maintaining postural balance during Front Kick and Turning Side Kick motions. To do so, ten Taekwondo athletes: five skilled players(S, body mass: $65.0{\pm}5.8kg$, height: $172.3{\pm}3.7cm$, age: $20.0{\pm}1.2yrs$, career: $9.0{\pm}1.9yrs$) and five less-skilled players(LS, body mass: $67.1{\pm}5.5kg$, height: $173.2{\pm}5.1cm$, age: $19.4{\pm}1.7yrs$, career: $9.6{\pm}1.7yrs$) participated in this study. A three-dimensional motion analysis was performed on the participants using eight infrared cameras and two force plate(sampling frequency of 200 Hz and 2000 Hz for S and LS players, respectively). The participants' motions were divided into: a front-kick phase(P1) and a turning-side-kick phase(P2). For P2(p<.05), the range and root mean square(RMS) of the ground reaction torque and the M-L mean velocity of COP were greater for LS than for S; similarly, for P2(p<.05), the M-L range, A-P range, and velocity of the COP were greater for LS than for S. Further, the M-L range and maximum velocity of the COP was greater for failure than for success(p<.05). The femoral biceps muscle for bending the knee joint was significantly stronger in S than in LS(p<.05). It is expected that these results will be useful in developing a training program for improving the balance and stability of Taekwondo poomsae athletes and improve their front-kick and turning-side-kick motions.

The Influences of Chiropractic Therapy on Neck Pain Patients (카이로프랙틱 치료법이 목통증환자에게 미치는 영향)

  • Lee, Jongrok;Oh, Chung-Uk;Lee, Minseon;Suh, Dongwha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1496-1505
    • /
    • 2014
  • Background: this study examined the Chiropractic therpy's influences on range of motions and pains with patients who have neck pain. Methods: In an experimental study with a two-group(chronic neck pain vs acute neck pain) design, 16 participants were enrolled for 2 weeks, 4 times, from march to april, 2013, with 8 acute neck pain patients and 8 chronic neck pain patients in chiropractic threrapy. Results: after the chiropractic threrapy, range of motions improved and pains were reduced significantly in both acute and chronic neck pain patients(P<.05). Conclusion: the chiropractic threrapy was effective in improving range of motions and reducing pains in persons who have acute and chronic neck pain. Thus, the chiropractic threrapy could be a resource for continuing study and adaptations to enhance the quality of life and well-being of neck pain patients.

Modification of ground motions using wavelet transform and VPS algorithm

  • Kaveh, A.;Mahdavi, V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper a simple approach is presented for spectral matching of ground motions utilizing the wavelet transform and a recently developed metaheuristic optimization technique. For this purpose, wavelet transform is used to decompose the original ground motions to several levels, where each level covers a special range of frequency, and then each level is multiplied by a variable. Subsequently, the vibrating particles system (VPS) algorithm is employed to calculate the variables such that the error between the response and target spectra is minimized. The application of the proposed method is illustrated through modifying 12 sets of ground motions. The results achieved by this method demonstrate its capability in solving the problem. The outcomes of the VPS algorithm are compared to those of the standard colliding bodies optimization (CBO) to illustrate the importance of the enhancement of the algorithm.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.