• Title/Summary/Keyword: Range Sensor

Search Result 2,613, Processing Time 0.029 seconds

Microcomputer Based Vacuum Drying System and its Application to the Vacuum Drying of Green Red Pepper (마이크로컴퓨터 감압건조(減壓乾燥)시스템의 제작운영(製作運營)과 풋고추의 감압건조특성(減壓乾燥特性))

  • Chun, Jae-Kun;Kang, Jun-Soo
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 1987
  • In Girder to measure the pressure and weight decrease of drying sample during the vacuum drying process of food, sensing devices were designed and constructed with strain gauge. Microcomputer based vacuum drying system was made up of these devices interfaced to apple II microcomputer. The electrical output signal from vacuum sensor which constituted with Bourdon tube whereon strain gauge attached were digitalized and input to microcomputer through the MC 6821 interface I.C. chip. The relationship between read-out digital value (D) from microcomputer and readings of vacuum gauge (P, mmHg) was P=-146.136+3.620D'(r=0.9994) The pressure control of vacuum dryer was successfully conducted in the range of $400{\sim}600\;mmHg$ accuracy. The digitalized load cell output (D) could be correlated with the real weight (W, g) as W=-14,000+0.585D (r=0.9998) Drying curves of green red pepper under $64^{\circ}C$, $400{\sim}600\;mmHg$ was similar to those of red pepper and differently affected by the degree of vacuum pressure but was varied according to their shape (cut or whole). Moisture movement of green red pepper during the vacuum drying process was fitted to Page model. The empirical equations obtained were $M-M_e/M_o-M_e={\exp}\;(-0.0673{\theta}^{1.177})$ and $M-M_e/M_o-M_e={\exp}\;(-0.0655\;{\theta}^{1.477})$ for whole and cut green red pepper, respectively.

  • PDF

The Study on Spatial Classification of Riverine Environment using UAV Hyperspectral Image (UAV를 활용한 초분광 영상의 하천공간특성 분류 연구)

  • Kim, Young-Joo;Han, Hyeong-Jun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.633-639
    • /
    • 2018
  • High-resolution images using remote sensing (RS) is importance to secure for spatial classification depending on the characteristics of the complex and various factors that make up the river environment. The purpose of this study is to evaluate the accuracy of the classification results and to suggest the possibility of applying the high resolution hyperspectral images obtained by using the drone to perform spatial classification. Hyperspectral images obtained from study area were reduced the dimensionality with PCA and MNF transformation to remove effects of noise. Spatial classification was performed by supervised classifications such as MLC(Maximum Likelihood Classification), SVM(Support Vector Machine) and SAM(Spectral Angle Mapping). In overall, the highest classification accuracy was showed when the MLC supervised classification was used by MNF transformed image. However, it was confirmed that the misclassification was mainly found in the boundary of some classes including water body and the shadowing area. The results of this study can be used as basic data for remote sensing using drone and hyperspectral sensor, and it is expected that it can be applied to a wider range of river environments through the development of additional algorithms.

Development of ionic liquid based solid state electrolyte and nanocarbon composite for all solid-state energy storage device (전고체형 에너지 저장 매체 제조를 위한 이온성 액체 기반의 고체 전해질과 탄소나노복합체 기반의 전극소재 개발)

  • Kim, Yong Ryeol;Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1253-1258
    • /
    • 2019
  • The solid-state electrolyte based on polymer is applicable to various electrochemical devices including supercapacitor, battery, sensor, actuator and has great attention to develop its ionic conductivity from conventional polymer electrolyte by uisng wide range of ionic liquids. The research about ion gel as a solid state electrolyte with the ionic liquid has focused on the wearable and flexible electronic device to use as the high electrical and electrochemical performances, mechanical strength of polymer. In this work, we have investigated and developed solid-state electrolyte based on the ionic liquid and polymer with enhanced ionic conductivity and stability.

Numerical Study on the Development of the Seismic Response Prediction Method for the Low-rise Building Structures using the Limited Information (제한된 정보를 이용한 저층 건물 구조물의 지진 응답 예측 기법 개발을 위한 해석적 연구)

  • Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2020
  • There are increasing cases of monitoring the structural response of structures using multiple sensors. However, owing to cost and management problems, limited sensors are installed in the structure. Thus, few structural responses are collected, which hinders analyzing the behavior of the structure. Therefore, a technique to predict responses at a location where sensors are not installed to a reliable level using limited sensors is necessary. In this study, a numerical study is conducted to predict the seismic response of low-rise buildings using limited information. It is assumed that the available response information is only the acceleration responses of the first and top floors. Using both information, the first natural frequency of the structure can be obtained. The acceleration information on the first floor is used as the ground motion information. To minimize the error on the acceleration history response of the top floor and the first natural frequency error of the target structure, the method for predicting the mass and stiffness information of a structure using the genetic algorithm is presented. However, the constraints are not considered. To determine the range of design variables that mean the search space, the parameter prediction method based on artificial neural networks is proposed. To verify the proposed method, a five-story structure is used as an example.

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.

Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber (광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Sung-Uk;Min, Kyoung-Ju;Park, Dong-Su;Pang, Gi-Sung;Kim, Kang-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF

Development and Testing of CdZnTe Detector for Pocket Surveymeter (CdZnTe 검출기를 이용한 개인용 Pocket Surveymeter의 제작 및 특성)

  • Lee, Hong-Kyu;Kang, Young-Il;Choi, Myung-Jin;Wang, Jin-Suk;Kim, Byung-Taik
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • In this paper, we discussed the fabrication and characterization of bulk type CdZnTe detector for pocket surveymeter. The resistivity of CdZnTe single crystal grown by the High Pressure Bridgman method is in the mid of $10^9$ ohm-cm. The detector structure is Au/CdZnTe/Au and gold electrode is formed by electroless deposition method. Resolutions of 4.8keV and 2.2keV were observed at 22.2keV line of $^{109}Cd$ and 59.6keV line of $^{241}Am$ at room temperature, respectively. We also constructed the small size pocket surveymeter using home made CdZnTe detector. It shows the good linearity over a range from 1mR/hr to 10R/hr with deviation less than 5%. The sensitivity of the surveymeter developed is $2.2{\times}10^3 cps/Rad\;hr^{-1}$ for the 662keV of $^{l37}Cs\;{\gamma}-ray$.

  • PDF

Electrochemical Study on Transfer Reaction of Ionizable Cefotiam across a Water/1,2-dichloroethane Interface and Drug Sensing Applications (물/1,2-Dichloroethane 계면에서 Cefotiam 약물 이온의 전이 반응 연구 및 약물 센서에 응용)

  • Liu, XiaoYun;Jeshycka, Shinta;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.581-588
    • /
    • 2018
  • In this article, electrochemical investigation of the transfer reaction of ionizable cefotiam (CTM), an antibiotic molecule across a polarized water/1,2-dichloroethane (water/1,2-DCE) interface was studied. Ion partition diagram providing the preferred charged form of CTM in either water or 1,2-DCE phase was established via the voltammetric evaluation of the transfer process of differently charged CTM species depending upon the pH variation of aqueous solutions. Thermodynamic information including the formal transfer potential and formal Gibbs transfer energy values in addition to important pharmacokinetics including partition coefficients of ionizable CTM were also evaluated. In particular, the current associated with the transfer of CTM present at pH 3.0 aqueous solution proportionally increased with respect to the CTM concentration which was further used for developing CTM sensitive ion sensor. In order to improve the portability and convenient usage, a single microhole interface fabricated in a supportive polyethylene terephthalate film was used of which hole was filled with a polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel replacing 1,2-DCE, a toxic organic solvent. A dynamic range of $1-10{\mu}M$ CTM was obtained.

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.