• Title/Summary/Keyword: Random effect

Search Result 2,044, Processing Time 0.04 seconds

A study on prediction of whipping effect of very large container ship considering multiple sea states

  • Kim, Beomil;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.387-398
    • /
    • 2020
  • In the design stage of the very large container ships, some methodologies for the whipping effects have been developed, but most of them are based on single sea state. We developed a methodology that considers multiple sea states. Fluid-structure Interaction (FSI) analyses with one dimensional structural model were carried out to capture slamming-induced transient whipping behaviors. Because of the nature of random phases of the applied wave spectra, the required period for entire FSI analyses was determined from the convergence study where the whipping effect became stable. Low pass filtering was applied to the transient whipping responses to obtain the hull girder bending moment processes. Peak counting method for the filtered whipping responses was used to obtain collection of the vertical bending moment peaks. The whipping effect from this new method is compared with that from based on single sea state approach. The efficiency and advantage of the new methodology are presented.

Korean Welfare Panel Data: A Computational Bayesian Method for Ordered Probit Random Effects Models

  • Lee, Hyejin;Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.45-60
    • /
    • 2014
  • We introduce a MCMC sampling for a generalized linear normal random effects model with the ordered probit link function based on latent variables from suitable truncated normal distribution. Such models have proven useful in practice and we have observed numerically reasonable results in the estimation of fixed effects when the random effect term is provided. Applications that utilize Korean Welfare Panel Study data can be difficult to model; subsequently, we find that an ordered probit model with the random effects leads to an improved analyses with more accurate and precise inferences.

Probabilistic Behavior of Laminated Composite Plates with Random Material Properties (재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동)

  • Noh, Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

Study on Normal and Random incidence Absorption Coefficient (수직 및 랜덤입사 흡음률에 관한 연구)

  • Kang Hyun-Ju;Kim Bong-Ki;Kim Sang-Ryul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.283-286
    • /
    • 2000
  • Comparison for various empirical models of normal incident absorption was made, along with experiments. Comparative result indicates that Voronina model which is function of fiber diameter and porosity is more suitable than the other models. An investigation for correlation between normal and random incident absorption was carried out by experiment and analysis. It appears that at the low frequencies, the random incident absorption is higher than the normal one, whileas at the high frequencies, the random incident absorption is decreased due to the effect of grazing incident components.

  • PDF

Seismic modeling consider of inhomogeneous gas hydrate layer (불균질 가스하이드레이트 층을 고려한 탄성파 모델링)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Joong;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.489-492
    • /
    • 2007
  • The P-wave velocity at the formation which contains gas hydrate varies very wide upon gas hydrate existence. These features on seismic shot gather can not be simulated normally by numerical modeling of homogeneous medium so that we need that of random inhomogeneous medium instead. We, in this study generated random inhomogeneous medium using gaussian ACF, exponential ACF and von Karman ACF and that we supposed the random inhomogeneous medium be gas hydrate formation to execute numeric modeling. The modeling result shows the typical effect by scattering caused by random hydrate formation as is observed from seismic shot gather where hydrate exist.

  • PDF

Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young-J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.658-664
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ${\phi}>0.4$. In the present study, the narrow-band noise characteristics of three impellers with a uniform and two random Pitch (type-A and-B) blades are compared by the SPL (Sound Pressure Level) spectra, and their frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are also discussed.

  • PDF

Bayesian estimation of median household income for small areas with some longitudinal pattern

  • Lee, Jayoun;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.755-762
    • /
    • 2015
  • One of the main objectives of the U.S. Census Bureau is the proper estimation of median household income for small areas. These estimates have an important role in the formulation of various governmental decisions and policies. Since direct survey estimates are available annually for each state or county, it is desirable to exploit the longitudinal trend in income observations in the estimation procedure. In this study, we consider Fay-Herriot type small area models which include time-specific random effect to accommodate any unspecified time varying income pattern. Analysis is carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. We have evaluated our estimates by comparing those with the corresponding census estimates of 1999 using some commonly used comparison measures. It turns out that among three types of time-specific random effects the small area model with a time series random walk component provides estimates which are superior to both direct estimates and the Census Bureau estimates.

Influence of Internal Resonance on Responses of a Spring-Pendulum System under Broad Band Random Excitation (광대역 불규칙 가진력을 받는 탄성진자계의 내부공진효과)

  • 이원경;조덕상
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.399-407
    • /
    • 1998
  • An investigation into the modal interaction of an autoparameteric systemunder broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. By means of the Gaussian closure method the dynamic moment equations explaining the random responses of the system are reduced to a system of autonomous ordinanary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. The stabilizing effect of system damping is also examined.

  • PDF

Deformation Analysis for Compression Molding of Polymeric Composites with Random/ Unidirectional Fiber-reinforced laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합판재의 압축변형 해석)

  • 조선형
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.188-194
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin. lightweight. strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. This study analyzes numerically the characteristics of flow fronts such as a bulging phenomenon made by changing viscosity of random mat and unidirectional fiber mat and slip parameters. And it is discussed that the effect of ratio of viscosity A and stack type on mold filling parameters

  • PDF

Stochastic free vibration analysis of smart random composite plates

  • Singh, B.N.;Vyas, N.;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.481-506
    • /
    • 2009
  • The present study is concerned with the stochastic linear free vibration study of laminated composite plate embedded with piezoelectric layers with random material properties. The system equations are derived using higher order shear deformation theory. The lamina material properties of the laminate are modeled as basic random variables for accurate prediction of the system behavior. A $C^0$ finite element is used for spatial descretization of the laminate. First order Taylor series based mean centered perturbation technique in conjunction with finite element method is outlined for the problem. The outlined probabilistic approach is used to obtain typical numerical results, i.e., the mean and standard deviation of natural frequency. Different combinations of simply supported, clamped and free boundary conditions are considered. The effect of side to thickness ratio, aspect ratio, lamination scheme on scattering of natural frequency is studied. The results are compared with those available in literature and an independent Monte Carlo simulation.