• Title/Summary/Keyword: Random Vibration Environment

Search Result 57, Processing Time 0.026 seconds

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

Random Vibration Analysis for Satellite Design (위성체 설계를 위한 랜덤 진동 해석)

  • Lee, Won-Beom;Kim, Gyeong-Won
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.102-107
    • /
    • 2006
  • In this study, the dynamic environment of satellite consists of excessive vibration at low frequency and irregular acceleration transferred by launch vehicle structure. Excessive vibration at low frequency is generally approximated by a sinusoidal wave from 100Hz to 200Hz and primarily used to preliminary design The random vibration is created by structural vibration due to the combustion of launch vehicle, separation stage and external aerodynamic noise. these are transferred to the adapter structure between satellite and launch vehicle through the structure of launch vehicle. random vibration is being specified for acceptance tests, screening tests, and qualification tests, because it has been shown that random vibration more closely represents the true environments in which the electronic equipment must operate.

  • PDF

Vibration Characteristics Analysis of the Communication Satellite Transponder Equipment (통신위성 중계기 부품의 진동특성 해석)

  • 김현수;이명규;박종흥;김성종;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.374-379
    • /
    • 2001
  • The satellite electronic equipment is exposed to high level random vibration environment during the launch of spacecraft. The random vibration can cause damage of electronic equipment. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of transponder equipments of communication satellite. For the structural integrity of the communication satellite transponder equipment under qualification level random vibration, Finite Element analysis was carried out using the commercial code, MSC/Nastran and ANSYS and stress levels are presented. In order to validate the femodel, modal test was also performed and compared with numerical results.

  • PDF

Design Consideration and Verification on Random Vibration of Satellite Electronic Equipment while Launching (발사시 야기되는 랜덤진동을 고려한 위성체 전장품 설계 및 검증에 대한 연구)

  • 김홍배;서현석
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.971-976
    • /
    • 2000
  • High level random vibration environments induced while launching of spacecraft can damage sensitive electronic equipment, unless the equipment is properly packaged. Thus careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of electronic equipment of spacecraft. This paper describes the development process of Solar Array Regulator for KOMPAT-2, which is designed and tested by Korean engineers. Both analytical and experimental techniques are introduced in this paper.

  • PDF

A Study on the Vibrational Environment Test of KSLV-1 Demonstration Satellite (한국형 위성 발사체 성능 검증위성의 진동환경에 관한 연구)

  • Seo, Hyun-Suk;Kim, Hong-Bae;Woo, Sung-Hyun;Chae, Jang-Soo;Oh, Tae-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.966-970
    • /
    • 2005
  • On the basis of the development of KSLV-1, KoDSat was designed and manufactured to demonstrate the performance of KSLV-1. KoDSat is exposed to a severe vibrational environment at launch. The structural reliability of KoDSat has to be verified using vibrational test. The structural compatibility and verification of components between analysis and test can be proved using environmental vibration test. In this paper, we review the structural characteristic of thruster control unit for a space launch vehicle and design TCU housing using mathematical model. In order to verify the structural compatibility and reliability, half-sine shock, random and sing sweep vibration test was performed. Especially, sing sweep vibration test result is compared with analysis result and mathematical model is verified.

  • PDF

Design and Verification of Satellite Electronic Equipment with the consideration of Random Vibration while Launching (발사시 야기되는 랜덤진동을 고려한 위성체 전장품 설계 및 검증에 대한 연구)

  • Kim, Hong-Bae;Seo, Hyun-Suk;Moon, Sang-Mu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1246-1251
    • /
    • 2000
  • High level random vibration environments induced while launching of spacecraft can damage sensitive electronic equipment very rapidly, unless the equipment is properly packaged. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of electronic equipment of spacecraft. This paper describes the development process of Solar Array Regulator for KOMPAT-2, which is designed and tested by Korean engineers. Both analytical and experimental techniques are introduced in this paper.

  • PDF

Acoustic Loads Test of the Upper Stage of KSLV-I (소형위성발사체 상단부의 음향하중시험)

  • Chun, Young-Doo;Park, Jong-Chan;Chung, Eui-Seung;Park, Jung-Joo;Cho, Kwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.224-227
    • /
    • 2007
  • This paper introduces the results of acoustic loads test conducted on the upper stage assembly of KSLV-I, which is the first Korea space launch vehicle. A launch vehicle and its payloads are subjected to severe acoustic pressure loading when they lift off and ascent during the transonic periods. Acoustic loadings are spreaded out broad frequncy-spectrum up to 10,000Hz. Acoustic loads are a primary source of structural random vibration of the upper stage and payloads. Therefore, in order to verify the structural integrity of the upper stage assembly of KSLV-I and the survivability of its components under severe random vibration environment, acoustic loads test is conducted in the high intensity acoustic chamber with 142dB (overall SPL). The results show the structural design and component random vibration specifications well meet with the environmental requirements.

  • PDF

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

Evaluation of Structural Robustness of External Fuel Tank and Pylon for Military Aircraft under Random Vibration (랜덤진동에서 군용 항공기 외부연료탱크 및 파일런 구조 강건성 평가)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.777-783
    • /
    • 2021
  • Aircraft are affected by various vibrations during maneuvering. These vibrations may have a fatal effect on the survival of aircraft in some cases, so the safety of components applied to the aircraft should be proven against various vibrations through random vibration analysis. In this study, the structural robustness of an external fuel tank and pylon for military aircraft was evaluated under random vibration conditions using commercial software, MSC Random. In the random vibration analysis, a frequency response analysis was performed by imposing a unit load on the boundary condition point, and then excitation was performed with a PSD profile. In this process, the required mode data was extracted through a modal analysis method. In addition, the random vibration profile specified in the US Defense Environment Standard was applied as random vibration conditions, and the PSD profile given in units of G's was converted into units of gravitational acceleration. As a result of the numerical analysis, we evaluated the structural robustness of the external fuel tank and pylon by identifying the safety margins of beam elements, shell elements, and solid elements in a numerical model for random vibration in the x, y, and z directions.

Prediction of Acoustic Performance of Sound Barrier Using Multiple Random- Point Impact (임의의 다중 점가진을 이용한 흡차음재의 성능 예측)

  • 신재성;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.877-881
    • /
    • 2001
  • In this paper, a model is developed that can predict insulation performance of sound barrier systems under the action of multiple random point impact. The predicted results are compared with the measured results obtained by using APAMAT II. The results show the error due to the difference between experimental environment and theoretical assumptions. The model is needed to be improved to obtain better agreement between predicted and measured results.

  • PDF