• Title/Summary/Keyword: Random Search Technique

Search Result 57, Processing Time 0.026 seconds

Linear Inversion of Heat Flow Data (지각열류량(地殼熱流量)의 선형(線型) 반전(反轉))

  • Han, Wook
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.163-169
    • /
    • 1984
  • A linear inversion of heat flow values using heat production data with reliable value is studied in this work. To evaluate 2-D problem, a thin vertical sheet model is considered. Making use of a relation based on potential theory, a new relation between $q_{rad}$ and $A_0$ is derived. The forward calculations with noise and without noise are shown. The inversion of random search is comparable to that of ridge regression method. The agreements between the computed and best fit after inversion suggest the importance of random search method in the inversion technique.

  • PDF

High Order Template Scheme for Rapid Acquisition in the UWB Communication System (고차 모델을 사용한 광대역 통신 시스템의 새로운 고속 동기화 기법)

  • Baasantseren, Gansuren;Lin, Xiaoju;Lee, Hae-Kee;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The low power of ultra-wideband (UWB) signal makes the acquisition of UWB signal be a more challenging task. In this paper, we propose the method of high order template signal technique that reduces the synchronization time. Experimental results are presented to show the improvements of performance in the mean acquisition time (MAT) and the probability of detection. The performance compared with the serial search, the truly random search and the random permutation search. It is shown that over typical UWB multipath channels, a random permutation search scheme may yield lower MAT than serial search.

Economic Life Assessment of Power Transformer using HS Optimization Algorithm (HS 최적화 알고리즘을 이용한 전력용 변압기의 경제적 수명평가)

  • Lee, Tae-bong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.123-128
    • /
    • 2017
  • Electric utilities has been considered the necessity to introduce AM(asset management) of electric power facilities in order to reduce maintenance cost of existing facilities and to maximize profit. In order to make decisions in terms of repairs and replacements for power transformers, not only measuring by counting parts and labor costs, but comprehensive comparison including reliability and cost is needed. Therefore, this study is modeling input cost for power transformer during its entire life and also the life cycle cost (LCC) technique is applied. In particular, this paper presents an application of heuristic harmony search(HS) optimization algorithm to the convergence and the validity of economic life assessment of power transformer from LCC technique. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the proposed identification method has been demonstrated through an economic life assessment simulation of power transformer using HS optimization algorithm.

Integer Ambiguity Search Technique Using SeparatedGaussian Variables

  • Kim, Do-Yoon;Jang, Jae-Gyu;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Real-Time Kinematic GPS positioning is widely used for many applications.Resolving ambiguities is the key to precise positioning. Integer ambiguity resolution isthe process of resolving the unknown cycle ambiguities of double difference carrierphase data as integers. Two important issues of resolving are efficiency andreliability. In the conventional search techniques, we generally used chi-squarerandom variables for decision variables. Mathematically, a chi-square random variableis the sum of mutually independent, squared zero-mean unit-variance normal(Gaussian) random variables. With this base knowledge, we can separate decisionvariables to several normal random variables. We showed it with related equationsand conceptual diagrams. With this separation, we can improve the computationalefficiency of the process without losing the needed performance. If we averageseparated normal random variables sequentially, averaged values are also normalrandom variables. So we can use them as decision variables, which prevent from asudden increase of some decision variable. With the method using averaged decisionvalues, we can get the solution more quicklv and more reliably.To verify the performance of our proposed algorithm, we conducted simulations.We used some visual diagrams that are useful for intuitional approach. We analyzedthe performance of the proposed algorithm and compared it to the conventionalmethods.

A Query Randomizing Technique for breaking 'Filter Bubble'

  • Joo, Sangdon;Seo, Sukyung;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.117-123
    • /
    • 2017
  • The personalized search algorithm is a search system that analyzes the user's IP, cookies, log data, and search history to recommend the desired information. As a result, users are isolated in the information frame recommended by the algorithm. This is called 'Filter bubble' phenomenon. Most of the personalized data can be deleted or changed by the user, but data stored in the service provider's server is difficult to access. This study suggests a way to neutralize personalization by keeping on sending random query words. This is to confuse the data accumulated in the server while performing search activities with words that are not related to the user. We have analyzed the rank change of the URL while conducting the search activity with 500 random query words once using the personalized account as the experimental group. To prove the effect, we set up a new account and set it as a control. We then searched the same set of queries with these two accounts, stored the URL data, and scored the rank variation. The URLs ranked on the upper page are weighted more than the lower-ranked URLs. At the beginning of the experiment, the difference between the scores of the two accounts was insignificant. As experiments continue, the number of random query words accumulated in the server increases and results show meaningful difference.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Development of a Multi-objective function Method Based on Pareto Optimal Point (Pareto 최적점 기반 다목적함수 기법 개발에 관한 연구)

  • Na, Seung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.175-182
    • /
    • 2005
  • It is necessary to develop an efficient optimization technique to optimize the engineering structures which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of engineering structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points by spreading point randomly entire the design spaces. In this paper, a Pareto optimal based multi-objective function method (PMOFM) is developed by considering the search direction based on Pareto optimal points, step size, convergence limit and random search generation . The PMOFM can also apply to the single objective function problems, and can consider the discrete design variables such as discrete plate thickness and discrete stiffener spaces. The design results are compared with existing Evolutionary Strategies (ES) method by performing the design of double bottom structures which have discrete plate thickness and discrete stiffener spaces.

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Hyperparameter Search for Facies Classification with Bayesian Optimization (베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색)

  • Choi, Yonguk;Yoon, Daeung;Choi, Junhwan;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • With the recent advancement of computer hardware and the contribution of open source libraries to facilitate access to artificial intelligence technology, the use of machine learning (ML) and deep learning (DL) technologies in various fields of exploration geophysics has increased. In addition, ML researchers have developed complex algorithms to improve the inference accuracy of various tasks such as image, video, voice, and natural language processing, and now they are expanding their interests into the field of automatic machine learning (AutoML). AutoML can be divided into three areas: feature engineering, architecture search, and hyperparameter search. Among them, this paper focuses on hyperparamter search with Bayesian optimization, and applies it to the problem of facies classification using seismic data and well logs. The effectiveness of the Bayesian optimization technique has been demonstrated using Vincent field data by comparing with the results of the random search technique.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.