• Title/Summary/Keyword: Random Oracle

Search Result 87, Processing Time 0.02 seconds

Certificateless Proxy Re-Encryption Scheme and Its Extension to Multiple KGC Environment (무인증서기반 프락시 재암호화 기법 및 다중 KGC 환경으로의 확장)

  • Sur, Chul;Jung, Chae-Duk;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.530-539
    • /
    • 2009
  • In this paper we introduce the notion of certificateless proxy re-encryption which enjoys the advantages of certificateless cryptography while providing the functionalities of proxy re-encryption. We give precise definitions for secure certificateless proxy re-encryption schemes and also present a concrete scheme from bilinear pairing. Our scheme is unidirectional and compatible with current certificateless encryption deployments, In addition, we show that our scheme has chosen ciphertext security in the random oracle model. Finally, we extend the proposed scheme for appling multiple KGC environment.

  • PDF

On-Line/Off-Line Signature Schemes with Tight Security Reduction to the RSA Problem (RSA 문제와 동등한 안전성을 갖는 온라인/오프라인 서명 기법)

  • Choi, Kyung-yong;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.327-338
    • /
    • 2018
  • On-line/off-line signature is a technique for performing heavy computations required for signature generation in the off-line stage and completing the final signature by a simple operation in the online stage. This is suitable for application environments that require immediate signing responses to multiple users. In this paper, we propose two new on-line/off-line signature schemes based on RSA problem. The first technique can generate a signature with a fixed base exponentiation when signing online, and the second technique can complete an online signature with a very simple calculation such as a hash operation. The security of both signatures is based on the RSA problem, which is proven to be tightly secure without security loss in the random oracle model.

Towards Smart Card Based Mutual Authentication Schemes in Cloud Computing

  • Li, Haoxing;Li, Fenghua;Song, Chenggen;Yan, Yalong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2719-2735
    • /
    • 2015
  • In the cloud environment, users pay more attentions to their data security since all of them are stored in the cloud server. Researchers have proposed many mutual authentication schemes for the access control of the cloud server by using the smart card to protect the sensitive data. However, few of them can resist from the smart card lost problem and provide both of the forward security and the backward security. In this paper, we propose a novel authentication scheme for cloud computing which can address these problems and also provide the anonymity for the user. The trick we use is using the password, the smart card and the public key technique to protect the processes of the user's authentication and key exchange. Under the Elliptic Curve Diffie-Hellman (ECDH) assumption, it is provably secure in the random oracle model. Compared with the existing smart card based authentication schemes in the cloud computing, the proposed scheme can provide better security degree.

An Untraceable ECC-Based Remote User Authentication Scheme

  • Mehmood, Zahid;Chen, Gongliang;Li, Jianhua;Albeshri, Aiiad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1742-1760
    • /
    • 2017
  • Recent evolution in the open access internet technology demands that the identifying information of a user must be protected. Authentication is a prerequisite to ensure the protection of user identification. To improve Qu et al.'s scheme for remote user authentication, a recent proposal has been published by Huang et al., which presents a key agreement protocol in combination with ECC. It has been claimed that Huang et al. proposal is more robust and provides improved security. However, in the light of our experiment, it has been observed that Huang et al.'s proposal is breakable in case of user impersonation. Moreover, this paper presents an improved scheme to overcome the limitations of Huang et al.'s scheme. Security of the proposed scheme is evaluated using the well-known random oracle model. In comparison with Huang et al.'s protocol, the proposed scheme is lightweight with improved security.

Many-to-One Encryption and Authentication Scheme and Its Application

  • Lin, Xi-Jun;Wu, Chuan-Kun;Liu, Feng
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.18-27
    • /
    • 2008
  • This paper is to study a subclass of group-oriented cryptographic scheme: Many-to-one encryption and authentication scheme. The many-to-one encryption and authentication scheme is to solve a practical problem, i.e., the scenario that the number of the receivers is very small compared with the number of the senders and a receiver may serve millions of senders. Compared with the traditional methods, the burdens of the receiver and the KGC are reduced greatly. How to revoke a sender from his receiver's legitimate sender group is also proposed and it is efficient compared with some traditional methods. The proposed scheme is proven in the random oracle models. The computational complexity of our scheme is independent of the number of the senders. At the end of the paper, an example is given to show how to use our scheme in online software registration and update.

Secure and Efficient Identity-based Batch Verification Signature Scheme for ADS-B System

  • Zhou, Jing-xian;Yan, Jian-hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6243-6259
    • /
    • 2019
  • As a foundation of next-generation air transportation systems, automatic dependent surveillance-broadcast (ADS-B) helps pilots and air traffic controllers create a safer and more efficient national airspace system. Owing to the open communication environment, it is easy to insert fake aircraft into the system via spoofing or the insertion of false messages. Efforts have thus been made in academic research and practice in the aviation industry to ensure the security of transmission of messages of the ADS-B system. An identity-based batch verification (IBV) scheme was recently proposed to enhance the security and efficiency of the ADS-B system, but current IBV schemes are often too resource intensive because of the application of complex hash-to-point operations or bilinear pairing operations. In this paper, we propose a lightweight IBV signature scheme for the ADS-B system that is robust against adaptive chosen message attacks in the random oracle model, and ensures the security of batch message verification and against the replaying attack. The proposed IBV scheme needs only a small and constant number of point multiplication and point addition computations instead of hash-to-point or pairing operations. Detailed performance analyses were conducted to show that the proposed IBV scheme has clear advantages over prevalent schemes in terms of computational cost and transmission overhead.

An Efficient Dynamic Group Signature with Non-frameability

  • Xie, Run;Xu, Chunxiang;He, Chanlian;Zhang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2407-2426
    • /
    • 2016
  • A group signature scheme allows any member to sign on behalf of a group. It is applied to practical distributed security communication environments, such as privacy-preserving, data mining. In particular, the excellent features of group signatures, including membership joining and revocation, anonymity, traceability, non-frameability and controllable linkability, make group signature scheme more attractive. Among these features, non-frameability can guarantee that a member's signature cannot be forged by any other (including issuer), and controllable linkability supports to confirm whether or not two group signatures are created by the same signer while preserving anonymity. Until now, only Hwang et al.'s group schemes (proposed in 2013 and 2015) can support all of these features. In this paper, we present a new dynamic group signature scheme which can achieve all of the above excellent features. Compared with their schemes, our scheme has the following advantages. Firstly, our scheme achieves more efficient membership revocation, signing and verifying. The cost of update key in our scheme is two-thirds of them. Secondly, the tracing algorithm is simpler, since the signer can be determined without the judging step. Furthermore, in our scheme, the size of group public key and member's private key are shorter. Lastly, we also prove security features of our scheme, such as anonymity, traceability, non-frameability, under a random oracle model.

Certificateless multi-signer universal designated multi-verifier signature from elliptic curve group

  • Deng, Lunzhi;Yang, Yixian;Chen, Yuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5625-5641
    • /
    • 2017
  • Certificateless public key cryptography resolves the certificate management problem in traditional public key cryptography and the key escrow problem in identity-based cryptography. In recent years, some good results have been achieved in speeding up the computation of bilinear pairing. However, the computation cost of the pairing is much higher than that of the scalar multiplication over the elliptic curve group. Therefore, it is still significant to design cryptosystem without pairing operations. A multi-signer universal designated multi-verifier signature scheme allows a set of signers to cooperatively generate a public verifiable signature, the signature holder then can propose a new signature such that only the designated set of verifiers can verify it. Multi-signer universal designated multi-verifier signatures are suitable in many different practical applications such as electronic tenders, electronic voting and electronic auctions. In this paper, we propose a certificateless multi-signer universal designated multi-verifier signature scheme and prove the security in the random oracle model. Our scheme does not use pairing operation. To the best of our knowledge, our scheme is the first certificateless multi-signer universal designated multi-verifier signature scheme.

Fuzzy identity-based signature scheme from lattice and its application in biometric authentication

  • Zhang, Xiaojun;Xu, Chunxiang;Zhang, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2762-2777
    • /
    • 2017
  • A fuzzy identity based signature (FIBS) scheme allows a signer with identity ${\omega}$ to generate a signature which could be verified under identity ${\omega}^{\prime}$ if and only if ${\omega}$ and ${\omega}^{\prime}$ are within a certain distance of each other as judged by some metric. In this paper, we propose an efficient FIBS scheme from lattice assumption, which can resist quantum-computer attacks. Without using the Bonsai Tree technique, we utilize the lattice basis delegation technique to generate the private key, which has the advantage of keeping the lattice dimension invariant. We also prove that our proposed scheme is existentially unforgeable under an adaptive chosen message and identity attack in the random oracle model. Compared with existing scheme, our proposed scheme is much more efficient, especially in terms of communication overhead. Since our FIBS scheme possesses similar error-tolerance property, it can be well applied in post-quantum communication biometric authentication environments, where biometric identifiers such as fingerprints, voice, iris and gait are used in human identification.

A Security-Enhanced Identity-Based Batch Provable Data Possession Scheme for Big Data Storage

  • Zhao, Jining;Xu, Chunxiang;Chen, Kefei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4576-4598
    • /
    • 2018
  • In big data age, flexible and affordable cloud storage service greatly enhances productivity for enterprises and individuals, but spontaneously has their outsourced data susceptible to integrity breaches. Provable Data Possession (PDP) as a critical technology, could enable data owners to efficiently verify cloud data integrity, without downloading entire copy. To address challenging integrity problem on multiple clouds for multiple owners, an identity-based batch PDP scheme was presented in ProvSec 2016, which attempted to eliminate public key certificate management issue and reduce computation overheads in a secure and batch method. In this paper, we firstly demonstrate this scheme is insecure so that any clouds who have outsourced data deleted or modified, could efficiently pass integrity verification, simply by utilizing two arbitrary block-tag pairs of one data owner. Specifically, malicious clouds are able to fabricate integrity proofs by 1) universally forging valid tags and 2) recovering data owners' private keys. Secondly, to enhance the security, we propose an improved scheme to withstand these attacks, and prove its security with CDH assumption under random oracle model. Finally, based on simulations and overheads analysis, our batch scheme demonstrates better efficiency compared to an identity based multi-cloud PDP with single owner effort.