• Title/Summary/Keyword: Random Excitation

Search Result 225, Processing Time 0.031 seconds

Dynamic and reliability analysis of stochastic structure system using probabilistic finite element method

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Cho, Dae-Seung
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.125-135
    • /
    • 2004
  • Industrial structure systems may have nonlinearity, and are also sometimes exposed to the danger of random excitation. This paper proposes a method to analyze response and reliability design of a complex nonlinear structure system under random excitation. The nonlinear structure system which is subjected to random process is modeled by finite element method. The nonlinear equations are expanded sequentially using the perturbation theory. Then, the perturbed equations are solved in probabilistic methods. Several statistical properties of random process that are of interest in random vibration applications are reviewed in accordance with the nonlinear stochastic problem.

The Effect of Random Point Excitation on the Vibration Level of Plates

  • Park, Myung-Jin;Yoo, Song-Min;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.583-590
    • /
    • 2002
  • When a mechanical structure is driven by stationary wide band random point forces, the resulting vibration depends upon the number, location, and joint statistical properties of the exciting forces. In this study, under the assumption of light damping, an approximate procedure for analyzing plates is briefly outlined. The effects of number, location and correlation of the force field on the vibration level are then investigated for various cases in which random point forces with band limited white noise are applied, and the optimal spacing between input forces that produces a relative minimum in the vibration response is predicted.

Direct integration method for stochastic finite element analysis of nonlinear dynamic response

  • Zhang, S.W.;Ellingwood, B.;Corotis, R.;Zhang, Jun
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.273-287
    • /
    • 1995
  • Stochastic response of systems to random excitation can be estimated by direct integration methods in the time domain such as the stochastic central difference method (SCDM). In this paper, the SCDM is applied to compute the variance and covariance in response of linear and nonlinear structures subjected to random excitation. The accuracy of the SCDM is assessed using two-DOF systems with both deterministic and random material properties excited by white noise. For the former case, closed-form solutions can be obtained. Numerical results also are presented for a simply supported geometrically nonlinear beam. The stiffness of this beam is modeled as a random field, and the beam is idealized by the stochastic finite element method. A perturbation technique is applied to formulate the equations of motion of the system, and the dynamic structural response statistics are obtained in a time domain analysis. The effect of variations in structural parameters and the numerical stability of the SCDM also are examined.

Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test (랜덤가진시험을 이용한 대형 크랭크샤프트 가공용 복합다기능 선반의 강성 평가)

  • Choi, Young Hyu;Ha, Gyung Bo;An, Ho Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.627-634
    • /
    • 2014
  • Machine tool vibration is well known for reducing machining accuracy. Because vibration response of a linear structure generally depends on its transfer function if the magnitude of excitation were kept constant, this study introduces a RET(Random Excitation Test) based on FRF method to evaluate stiffness of a prototype HDMTL(Heavy-Duty Multi-Tasking Lathe) for large crankshaft of marine engine. Firstly, two force loops of the lathe and corresponding structural loops were identified:1) workpiece - spindle - head stock - main bed, 2) workpiece - tool post - carriage bed. Secondly, compliances of each structural loop were measured respectively using RET with a hydraulic exciter and then converted into stiffness. Finally, the measured stiffness was compared with that obtained previously by FEM analysis. As the result, both measured and computed stiffness were closely in agreement with each other. And the prototype HDMTL has evidently sufficient rigidity above ordinary heavy-duty lathes.

Nonlinear Responses of a Hinged-Clamped Beam under Random Excitation (불규칙 가진되는 회전-고정보의 비선형응답특성)

  • 조덕상;김영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.427-436
    • /
    • 2000
  • This study presents the nonlinear responses of a hinged-clamped beam under broadband random excitation. By using Galerkin's method the governing equation is reduced to a system or nonautonomous nonlinear ordinary differential equations. The Fokker-Planck equation is used to generate a general first-order differential equation in the joint moments of response coordinates. Gaussian and non-Gaussian closure schemes are used to close the infinite coupled moment equations. The closed equations are then solved for response statistics in terms of system and excitation parameters. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. Monte Carlo simulation is used for numerical verification.

  • PDF

Stochastic Response of a System with Autoparametric Coupling (자기매계변수 연성을 갖는 응답의 통계적 특성)

  • 조덕상;김영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.387-394
    • /
    • 2000
  • The nonlinear modal interaction of an autoparametric system under a broadband random excitation is investigated. The specific system examined is an autoparametric vibration absorber with internal resonance, which is typical of many common structural configurations. By means of Gaussian closure scheme the dynamic moment equations explaining the random responses of the system are reduced to a system of autonomous ordinary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. We could not find the destabilizing effect of damping, which was reported in References (18) and (20). The saturation phenomenon, which is well known in deterministic nonlinear system, did not take place lot this system subject to broadband random excitation.

  • PDF

Vibration Analysis of Composite Satellite Antenna by Acoustic Excitation (음향 가진에 의한 위성 안테나의 진동해석)

  • ;;;;;Horst Stockburger
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.123-126
    • /
    • 2002
  • Acoustic vibration analysis has been performed using random vibration analysis module of MSC/NASTRAN to evaluate the safety of the composite satellite antenna structure under the acoustic pressure from the launch vehicle. It was found that maximum $3\sigma$ stress by acoustic excitation was less than allowable stress.

  • PDF

Response Characteristics of Secondary Structures Subjected to Stationary Random Base Excitation (랜덤 기저가진을 받는 부-구조물의 응답특성)

  • 진춘언;김천욱
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.741-748
    • /
    • 1998
  • 본 연구에서는 랜덤 기저가진을 받는 주 구조물과 여러 개의 부 구조물로 구성된 계의 응답특성을 분석하고 특히, 부 구조물의 응답분포에 관하여 연구하였다. 주 구조물의 응답이 최소가 되도록 설계변수를 최적화 할 경우, 부 구조물간의 응답분포가 균일하지 않음을 확인하고, 부 구조물간의 응답분포의 폭이 최소가 되는 진동수 비를 제안하였다.

  • PDF

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF