• Title/Summary/Keyword: Random Censorship

Search Result 34, Processing Time 0.015 seconds

Two-sample chi-square test for randomly censored data (임의로 관측중단된 두 표본 자료에 대한 카이제곱 검정방법)

  • 김주한;김정란
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.2
    • /
    • pp.109-119
    • /
    • 1995
  • A two sample chi-square test is introduced for testing the equality of the distributions of two populations when observations are subject to random censorship. The statistic is appropriate in testing problems where a two-sided alternative is of interest. Under the null hypothesis, the asymptotic distribution of the statistic is a chi-square distribution. We obtain two types of chi-square statistics ; one as a nonnegative definite quadratic form in difference of observed cell probabilities based on the product-limit estimators, the other one as a summation form. Data pertaining to a cancer chemotheray experiment are examined with these statistics.

  • PDF

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.

Testing Exponentiality Based on EDF Statistics for Randomly Censored Data when the Scale Parameter is Unknown (척도모수가 미지인 임의중도절단자료의 EDF 통계량을 이용한 지수 검정)

  • Kim, Nam-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.311-319
    • /
    • 2012
  • The simplest and the most important distribution in survival analysis is exponential distribution. Koziol and Green (1976) derived Cram$\acute{e}$r-von Mises statistic's randomly censored version based on the Kaplan-Meier product limit estimate of the distribution function; however, it could not be practical for a real data set since the statistic is for testing a simple goodness of fit hypothesis. We generalized it to the composite hypothesis for exponentiality with an unknown scale parameter. We also considered the classical Kolmogorov-Smirnov statistic and generalized it by the exact same way. The two statistics are compared through a simulation study. As a result, we can see that the generalized Koziol-Green statistic has better power in most of the alternative distributions considered.

Testing Log Normality for Randomly Censored Data (임의중도절단자료에 대한 로그정규성 검정)

  • Kim, Nam-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.883-891
    • /
    • 2011
  • For survival data we sometimes want to test a log normality hypothesis that can be changed into normality by transforming the survival data. Hence the Shapiro-Wilk type statistic for normality is generalized to randomly censored data based on the Kaplan-Meier product limit estimate of the distribution function. Koziol and Green (1976) derived Cram$\acute{e}$r-von Mises statistic's randomly censored version under the simpl hypothesis. These two test statistics are compared through a simulation study. As for the distribution of censoring variables, we consider Koziol and Green (1976)'s model and other similar models. Through the simulation results, we can see that the power of the proposed statistic is higher than that of Koziol-Green statistic and that the proportion of the censored observations (rather than the distribution of censoring variables) has a strong influence on the power of the proposed statistic.