• Title/Summary/Keyword: Random Binary

Search Result 282, Processing Time 0.022 seconds

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth (선편광된 10 GHz 선폭의 1 kW급 20/400-㎛ 이터븀 첨가 광섬유 레이저)

  • Jung, Yeji;Jung, Minwan;Lee, Kangin;Kim, Taewoo;Kim, Jae-Ihn;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.120-125
    • /
    • 2021
  • We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.

The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa (Methanol, Ethanol, 2-Propanol 그리고 1-Butanol 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정 및 예측)

  • Oh, In Seok;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2015
  • Flash point is one of the most important variables used to characterize fire and explosion hazard of liquids. The lower flash point data were measured for the binary systems {methanol + 1-butanol}, {ethanol + 1-butanol} and {2-propanol + 1-butanol} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The measured FP data agreed well with the predicted values of Raoult's law, Wilson, NRTL and UNIQUAC models. The average absolute deviation between the predicted and measured lower FP was less than 1.14 K.

A Logit Model for Repeated Binary Response Data (반복측정의 이가반응 자료에 대한 로짓 모형)

  • Choi, Jae-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.291-299
    • /
    • 2008
  • This paper discusses model building for repeated binary response data with different time-dependent covariates each occasion. Since repeated measurements data are having correlated structure, weighed least squares(WLS) methodology is applied. Repeated measures designs are usually having different sizes of experimental units like split-plot designs. However repeated measures designs differ from split-plot designs in that the levels of one or more factors cannot be randomly assigned to one or more of the sizes of experimental units in the experiment. In this case, the levels of time cannot be assigned at random to the time intervals. Because of this nonrandom assignment, the errors corresponding to the respective experimental units may have a covariance matrix. So, the estimates of effects included in a suggested logit model are obtained by using covariance structures.

Opponent Move Prediction of a Real-time Strategy Game Using a Multi-label Classification Based on Machine Learning (기계학습 기반 다중 레이블 분류를 이용한 실시간 전략 게임에서의 상대 행동 예측)

  • Shin, Seung-Soo;Cho, Dong-Hee;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.45-51
    • /
    • 2020
  • Recently, many games provide data related to the users' game play, and there have been a few studies that predict opponent move by combining machine learning methods. This study predicts opponent move using match data of a real-time strategy game named ClashRoyale and a multi-label classification based on machine learning. In the initial experiment, binary card properties, binary card coordinates, and normalized time information are input, and card type and card coordinates are predicted using random forest and multi-layer perceptron. Subsequently, experiments were conducted sequentially using the next three data preprocessing methods. First, some property information of the input data were transformed. Next, input data were converted to nested form considering the consecutive card input system. Finally, input data were predicted by dividing into the early and the latter according to the normalized time information. As a result, the best preprocessing step was shown about 2.6% improvement in card type and about 1.8% improvement in card coordinates when nested data divided into the early.

Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining (LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상)

  • Park, Seong-Chul;Kim, Jun-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.23-36
    • /
    • 2009
  • Network intrusion detection have been continuously improved by using data mining techniques. There are two kinds of methods in intrusion detection using data mining-supervised learning with class label and unsupervised learning without class label. In this paper we have studied the way of improving network intrusion detection accuracy by using LBG clustering algorithm which is one of unsupervised learning methods. The K-means method, that starts with random initial centroids and performs clustering based on the Euclidean distance, is vulnerable to noisy data and outliers. The nonuniform binary split algorithm uses binary decomposition without assigning initial values, and it is relatively fast. In this paper we applied the EM(Expectation Maximization) based LBG algorithm that incorporates the strength of two algorithms to intrusion detection. The experimental results using the KDD cup dataset showed that the accuracy of detection can be improved by using the LBG algorithm.

  • PDF

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

An Enhancement of Learning Speed of the Error - Backpropagation Algorithm (오류 역전도 알고리즘의 학습속도 향상기법)

  • Shim, Bum-Sik;Jung, Eui-Yong;Yoon, Chung-Hwa;Kang, Kyung-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1759-1769
    • /
    • 1997
  • The Error BackPropagation (EBP) algorithm for multi-layered neural networks is widely used in various areas such as associative memory, speech recognition, pattern recognition and robotics, etc. Nevertheless, many researchers have continuously published papers about improvements over the original EBP algorithm. The main reason for this research activity is that EBP is exceeding slow when the number of neurons and the size of training set is large. In this study, we developed new learning speed acceleration methods using variable learning rate, variable momentum rate and variable slope for the sigmoid function. During the learning process, these parameters should be adjusted continuously according to the total error of network, and it has been shown that these methods significantly reduced learning time over the original EBP. In order to show the efficiency of the proposed methods, first we have used binary data which are made by random number generator and showed the vast improvements in terms of epoch. Also, we have applied our methods to the binary-valued Monk's data, 4, 5, 6, 7-bit parity checker and real-valued Iris data which are famous benchmark training sets for machine learning.

  • PDF

Modified Back-Off Algorithm to Improve Fairness for Slotted ALOHA Sensor Networks (슬롯화된 ALOHA 센서 네트워크에서 공평성 향상을 위한 변형된 백오프 알고리즘)

  • Lee, Jong-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • In this paper, I propose an modified back-off algorithm to improve the fairness for slotted ALOHA sensor networks. In hierarchical networks, the performance degradation of a specific node can cause degradation of the overall network performance in case the data transmitted by lower nodes is needed to be synthesized and processed by an upper node. Therefore it is important to ensure the fairness of transmission performance to all nodes. The proposed scheme choose a back-off time of a node considering the previous transmission results as well as the current transmission result. Moreover a node that failed to transmit consecutively is given gradually shorter back-off time but a node that is success to transmit consecutively is given gradually longer back-off time. Through simulations, I compare and analyze the performance of the proposed scheme with the binary exponential back-off algorithm(BEB). The results show that the proposed scheme reduces the throughput slightly compared to BEB but improves the fairness significantly.

A Hybrid Multi-Level Feature Selection Framework for prediction of Chronic Disease

  • G.S. Raghavendra;Shanthi Mahesh;M.V.P. Chandrasekhara Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.101-106
    • /
    • 2023
  • Chronic illnesses are among the most common serious problems affecting human health. Early diagnosis of chronic diseases can assist to avoid or mitigate their consequences, potentially decreasing mortality rates. Using machine learning algorithms to identify risk factors is an exciting strategy. The issue with existing feature selection approaches is that each method provides a distinct set of properties that affect model correctness, and present methods cannot perform well on huge multidimensional datasets. We would like to introduce a novel model that contains a feature selection approach that selects optimal characteristics from big multidimensional data sets to provide reliable predictions of chronic illnesses without sacrificing data uniqueness.[1] To ensure the success of our proposed model, we employed balanced classes by employing hybrid balanced class sampling methods on the original dataset, as well as methods for data pre-processing and data transformation, to provide credible data for the training model. We ran and assessed our model on datasets with binary and multivalued classifications. We have used multiple datasets (Parkinson, arrythmia, breast cancer, kidney, diabetes). Suitable features are selected by using the Hybrid feature model consists of Lassocv, decision tree, random forest, gradient boosting,Adaboost, stochastic gradient descent and done voting of attributes which are common output from these methods.Accuracy of original dataset before applying framework is recorded and evaluated against reduced data set of attributes accuracy. The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy on multi valued class datasets than on binary class attributes.[1]

Application of Random Over Sampling Examples(ROSE) for an Effective Bankruptcy Prediction Model (효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용)

  • Ahn, Cheolhwi;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.525-535
    • /
    • 2018
  • If the frequency of a particular class is excessively higher than the frequency of other classes in the classification problem, data imbalance problems occur, which make machine learning distorted. Corporate bankruptcy prediction often suffers from data imbalance problems since the ratio of insolvent companies is generally very low, whereas the ratio of solvent companies is very high. To mitigate these problems, it is required to apply a proper sampling technique. Until now, oversampling techniques which adjust the class distribution of a data set by sampling minor class with replacement have popularly been used. However, they are a risk of overfitting. Under this background, this study proposes ROSE(Random Over Sampling Examples) technique which is proposed by Menardi and Torelli in 2014 for the effective corporate bankruptcy prediction. The ROSE technique creates new learning samples by synthesizing the samples for learning, so it leads to better prediction accuracy of the classifiers while avoiding the risk of overfitting. Specifically, our study proposes to combine the ROSE method with SVM(support vector machine), which is known as the best binary classifier. We applied the proposed method to a real-world bankruptcy prediction case of a Korean major bank, and compared its performance with other sampling techniques. Experimental results showed that ROSE contributed to the improvement of the prediction accuracy of SVM in bankruptcy prediction compared to other techniques, with statistical significance. These results shed a light on the fact that ROSE can be a good alternative for resolving data imbalance problems of the prediction problems in social science area other than bankruptcy prediction.