• Title/Summary/Keyword: Random Analysis

Search Result 4,569, Processing Time 0.121 seconds

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

Moving Load Analysis of Bridge Structures Using Experimental Modal Data (실험적 모우드 계수를 이용한 교량의 주행하중 해석)

  • 이형진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.409-420
    • /
    • 2002
  • This paper proposed a technique of structural re-analysis for the evaluation of dynamic responses of bridge structure under moving loads using experimental modal results. For successful structural re-analysis, it is required to have accurate estimation techniques of the modal characteristics of bridge structures. The natural frequencies and mode shapes were identified by direct fourier analysis techniques and damping ratios by the random decrement method, respectively. An interpolation method was also proposed for the extension of mode shape measured on limited DOFs. Second, the structural reanalysis was performed using moving mass model and identified modal parameters. The results from the reanalysis show that the proposed technique is very reasonable to evaluate the actual behavior of bridge structures under moving loads.

A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods (랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구)

  • Jangseob, Choi;Dongho, Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

Hysteretic model of isolator gap damper system and its equivalent linearization for random earthquake response analysis

  • Zhang, Hongmei;Gu, Chen
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.485-498
    • /
    • 2022
  • In near-fault earthquake prone areas, the velocity pulse-like seismic waves often results in excessive horizontal displacement for structures, which may result in severe structural failure during large or near-fault earthquakes. The recently developed isolator-gap damper (IGD) systems provide a solution for the large horizontal displacement of long period base-isolated structures. However, the hysteresis characteristics of the IGD system are significantly different from the traditional hysteretic behavior. At present, the hysteretic behavior is difficult to be reflected in the structural analysis and performance evaluation especially under random earthquake excitations for lacking of effective analysis models which prevent the application of this kind of IGD system. In this paper, we propose a mathematical hysteretic model for the IGD system that presents its nonlinear hysteretic characteristics. The equivalent linearization is conducted on this nonlinear model, which requires the variances of the IGD responses. The covariance matrix for the responses of the structure and the IGD system is obtained for random earthquake excitations represented by the Kanai-Tajimi spectrum by solving the Lyapunov equation. The responses obtained by the equivalent linearization are verified in comparison with the nonlinear responses by the Monte Carlo simulation (MCS) analysis for random earthquake excitations.

Performance Analysis of Perturbation-based Privacy Preserving Techniques: An Experimental Perspective

  • Ritu Ratra;Preeti Gulia;Nasib Singh Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.81-88
    • /
    • 2023
  • In the present scenario, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In Perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several perturbation strategies that may be used to protect data privacy. For this experiment, two perturbation techniques based on random projection and principal component analysis were used. These techniques include Improved Random Projection Perturbation (IRPP) and Enhanced Principal Component Analysis based Technique (EPCAT). The Naive Bayes classification algorithm is used for data mining approaches. These methods are employed to assess the precision, run time, and accuracy of the experimental results. The best perturbation method in the Nave-Bayes classification is determined to be a random projection-based technique (IRPP) for both the cardiovascular and hypothyroid datasets.

Probabilistic Behavior of Laminated Composite Plates with Random Material Properties (재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동)

  • Noh, Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

Reliability sensitivities with fuzzy random uncertainties using genetic algorithm

  • Jafaria, Parinaz;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.413-431
    • /
    • 2016
  • A sensitivity analysis estimates the effect of the change in the uncertain variable parameter on the probability of the structural failure. A novel fuzzy random reliability sensitivity measure of the failure probability is proposed to consider the effect of the epistemic and aleatory uncertainties. The uncertainties of the engineering variables are modeled as fuzzy random variables. Fuzzy quantities are treated using the ${\lambda}$-cut approach. In fact, the fuzzy variables are transformed into the interval variables using the ${\lambda}$-cut approach. Genetic approach considers different possible combinations within the search domain (${\lambda}$-cut) and calculates the parameter sensitivities for each of the combinations.

Particle Velocity and Intensity Estimation Error in Spatial Discrete Domain (입자 속도 및 인텐시티를 공간 영역에서 이산화할 때 발생하는 오차)

  • 김양한;최영철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.352-357
    • /
    • 2004
  • This paper studies the errors that associated with particle velocity and intensity in a space. We theoretically derived their bias error and random error. The analysis shows that the more samples do not always guarantee the better results. The random error of the velocity and intensity are increased when we have many samples. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.

Prediction of Paroxysmal Atrial Fibrillation using Time-domain Analysis and Random Forest

  • Lee, Seung-Hwan;Kang, Dong-Won;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.69-79
    • /
    • 2018
  • The present study proposes an algorithm that can discriminate between normal subjects and paroxysmal atrial fibrillation (PAF) patients, which is conducted using electrocardiogram (ECG) without PAF events. For this, time-domain features and random forest classifier are used. Time-domain features are obtained from Poincare plot, Lorenz plot of ${\delta}RR$ interval, and morphology analysis. Afterward, three features are selected in total through feature selection. PAF patients and normal subjects are classified using random forest. The classification result showed that sensitivity and specificity were 81.82% and 95.24% respectively, the positive predictive value and negative predictive value were 96.43% and 76.92% respectively, and accuracy was 87.04%. The proposed algorithm had an advantage in terms of the computation requirement compared to existing algorithm, so it has suggested applicability in the more efficient prediction of PAF.