• 제목/요약/키워드: RanBP2

검색결과 22건 처리시간 0.032초

Safety pharmacology study of AS2-006A, a new wound healing drug

  • Kim, Hyun-Jin;Choi, Kyu-Gap;Yoon, Mi-Ran;Do, Sun-Hee;Kim, Eun-Joo;Cha, Kyung-Hoi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.287.2-287.2
    • /
    • 2002
  • The safety pharmacological core battery studies of AS2-006A. a newly developed wound healing drug, were investigated according to the ICH S7A guidelines in compliance with Good Laboratory Practice(GLP) Regulations, The doses given were 0, 100. 300 and 1000 mg/kg and drugs were administered subcutaneously. The animals used for this study were mice, rats and guinea pigs. AS2-006A showed no effects on the central nervous system such as motor activity. behaviotal changes. coordination, sensory/motor reflex responses and body temperature. no effects on blood pressure(BP). heart rate(HR), and ECG profiles and respiratory system. it was concluded that AS2-006A possess no general pharmacological effects at all doses tested. (omitted)

  • PDF

Chrysanthemum stunt viroid in Dendranthema grandiflorum

  • Chung, Bong-Nam;Park, Gug-Seoun;Kim, Hyun-Ran;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • 제17권4호
    • /
    • pp.194-200
    • /
    • 2001
  • Chrysanthemum stunt viroid (CSVd) ws identified in chrysanthemum cv. Chunkwang showing symptoms of stunt with leaf distortion (K1) and stunt with chlorosis of leaves (K2) collected from the main cultivation area of Masan, Kyongnam province in Korea. The specific RNAs related with the diseased chrysanthemums were detected. Full-length 354 bp CSVd cDNAs were amplified from infected tissue by reverse transcription and polymerase chain reaction using a pair of primers specific for CSVd sequence. The amplified cDNA products were analyzed by agarose gel electrophoresis and the specific cDNAs were cloned. Nucleotide sequences of the two CSVd isolates K1 and K2 varied. Phylogenetic analysis of the nucleotide sequences of CSVd isolates indicated that K1 was closely related with J2 and Am 2 isolates. K1 and K2 were transmitted by grafting to Dendranthema grandiflorum cv. Mistletoe, Gynura aurantiaca, and Lycopersicon esculentum cv. Rutgers. This is the first report of CSVd in D. grandiflorum in Korea.

  • PDF

Evaluation of Clubroot Resistance in Chinese Cabbage and Its Inheritance in the European Turnip Line 'IT033820', a New Genetic Resource

  • Cho, Kang Hee;Kim, Ki Taek;Park, Suhyung;Kim, Su;Do, Kyung Ran;Woo, Jong Gyu;Lee, Hee Jae
    • 원예과학기술지
    • /
    • 제34권3호
    • /
    • pp.433-441
    • /
    • 2016
  • Clubroot caused by the protist Plasmodiophora brassicae is one of the most destructive diseases of Brassica crops. Developing Chinese cabbage cultivars with durable clubroot resistance (CR) is an important goal of breeding programs, which will require new genetic resources to be identified and introduced. In this study, we evaluated resistance to P. brassicae race 4 using 26 Chinese cabbage (B. rapa ssp. pekinensis ) cultivars compared to the clubroot-susceptible Chinese cabbage inbred line 'BP079' and the clubroot-resistant European turnip (B. rapa ssp. rapifera ) inbred line 'IT033820'. No symptoms of clubroot disease were found in 'IT033820' infected with P. brassicae race 4, whereas the Chinese cabbage cultivars exhibited disease symptoms to various degrees. The Chinese cabbage cultivars that were reported to be clubroot-susceptible were susceptible to P. brassicae race 4; however, seven of the 20 cultivars reported to be clubroot-resistant were susceptible to this race of P. brassicae to varying degrees. Resting spores of P. brassicae were abundant within the infected root tissues of 'BP079', as revealed by light microscopy and scanning electron microscopy (SEM), but they were not detected in root tissues of 'IT033820'. Although resting spores were not detected by light microscopy in root tissues of the clubroot-resistant Chinese cabbage cultivar 'Kigokoro 75', a few spores were observed by SEM. The $F_1$ hybrids from a cross between 'IT033820' and 'BP079' showed no disease symptoms, and all $BC_1P_1$ progenies from a cross between the $F_1$ hybrid and 'IT033820' exhibited a resistance phenotype. In the $BC_1P_2$ population from a cross between the $F_1$ hybrid and 'BP079', this trait segregated at a ratio of 3(R):1(S) (${\chi}^2=1.333$, p = 0.248) at a 5% significance level. Inoculated $BC_1P_2$ plants were either highly resistant or highly susceptible to the pathogen, indicating that the CR to race 4 of P. brassicae carried by 'IT033820' is dominant. In the $F_2$ population, this trait segregated at a ratio of 15(R):1(S) (${\chi}^2=0.152$, p = 0.696) at a 5% significance level, suggesting that CR in 'IT033820' is mainly controlled by two dominant genes. Therefore, 'IT033820' represents a promising genetic resource for developing durable CR breeding lines in Chinese cabbage.

INDUCTION OF MITOCHONDRIAL DNA DELETION BY IONIZING RADIATION IN HUMAN LUNG FIBROBLAST IMR-90 CELLS

  • Eom, Hyeon-Soo;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Protection and Research
    • /
    • 제34권2호
    • /
    • pp.49-54
    • /
    • 2009
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with $^{137}Cs$ $\gamma$-rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and $H_2O_2$-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and $H_2O_2$-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis)

  • Ran, Rongkun;Zhao, Qi;Abuzeid, Asmaa M.I.;Huang, Yue;Liu, Yunqiu;Sun, Yongxiang;He, Long;Li, Xiu;Liu, Jumei;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • 제58권1호
    • /
    • pp.73-79
    • /
    • 2020
  • Echinostoma revolutum is a zoonotic food-borne intestinal trematode that can cause intestinal bleeding, enteritis, and diarrhea in human and birds. To identify a suspected E. revolutum trematode from a red-crowned crane (Grus japonensis) and to reveal the genetic characteristics of its mitochondrial (mt) genome, the internal transcribed spacer (ITS) and complete mt genome sequence of this trematode were amplified. The results identified the trematode as E. revolutum. Its entire mt genome sequence was 15,714 bp in length, including 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding region (NCR), with 61.73% A+T base content and a significant AT preference. The length of the 22 tRNA genes ranged from 59 bp to 70 bp, and their secondary structure showed the typical cloverleaf and D-loop structure. The length of the large subunit of rRNA (rrnL) and the small subunit of rRNA (rrnS) gene was 1,011 bp and 742 bp, respectively. Phylogenetic trees showed that E. revolutum and E. miyagawai clustered together, belonging to Echinostomatidae with Hypoderaeum conoideum. This study may enrich the mitochondrial gene database of Echinostoma trematodes and provide valuable data for studying the molecular identification and phylogeny of some digenean trematodes.

Identification of Grapevine leafroll-associated virus 3 Ampelovirus from Grapevines in Korea

  • Kim, Hyun-Ran;Lee, Sin-Ho;Lee, Bong-Choon;Kim, Yeong-Tae;Park, Jin-Woo
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.127-130
    • /
    • 2004
  • Grapevine leaf roll-associated virus 3 (GLRaV-3) is one of the most important viral diseases of grapevine in the world. In this study, GLRaV-3 Ampelovirus was identi-fied from grapevines in Korea by analyzing viral coat protein size, nucleotide, and amino acid sequences. The molecular weight of viral coat protein from virus-infected in vitro plantlets was determined by western blot using a commercial GLRaV-3 polyclonal antibody. Western blot analysis showed a coat protein of about 43 kDa. RT-PCR product of about 942 bp which encoded the coat protein (CP) gene was amplified with specific primers. When the viruses existed at low titers in the host plant, the dsRNA had very specific template in RT- PCR amplification of fruit tree viruses. Especially, small-scale dsRNA extraction method was very reliable and rapid. Sequence analysis revealed that the CP of the GLRaV-3 Ko consisted of 942 bp nucleotide, which encoded 314 amino acid residues. The CP gene of GLRaV-3 Ko had 98.9% nucleotide sequence and 98.7% amino acid sequence identities with earlier reported GLRaV-3. This is the first report on molecular assay of GLRaV-3 Ampelovirus identified from Korea. The GLRaV-3 Ko CP clone would be very useful for breeding of virus resistant grapevines.

Complete Nucleotide Sequence of Cytochrome P450 2El Expressed in the Rat Brain

  • Shin Song Woo;You Kwan Hee;Ryu Hye Myung;Kim Su Won;Kwon Oh Sik;Song Jae Chan;Kim Myoung Hee;Kim Dae Ran;Yoo Min
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.109-113
    • /
    • 2005
  • From the RT-PCR amplifications using mRNA templates isolated from Sprague-Dawley rat brains, we isolated a cDNA fragment of 1,524 bp which covered the full coding information of the rat brain CYP2El. Its nucleotide sequence was identical to the previously reported rat liver CYP2El mRNA except for the difference of one base (A to C at the nucleotide position 73). This difference also altered the amino acid Lys to GIn. However, no insertion or deletion of nucleotide(s) which could alter the reading frame was found within the structure of this rat brain CYP2El. This study should provide the molecular basis regarding the pathophysiological function of CYP2El in the brain.

  • PDF

게맛살에서 분리된 Salmonella Thompson MFDS1004024의 유전체 염기서열 분석 (Complete genome sequence of Salmonella Thompson strain MFDS1004024 isolated from crab-stick)

  • 박세욱;이우정;유란희;주인선;곽효선;김순한
    • 미생물학회지
    • /
    • 제54권2호
    • /
    • pp.155-157
    • /
    • 2018
  • Salmonella enterica subsp. enterica serovar Thompson strain MFDS1004024 는 2014 년 한국에서 발생한 식중독 사고의 게맛살에서 분리되었다. 본 연구에서는 4,742,942 bp 의 크기와 약 52%의 G + C 함량을 가진 MFDS1004024 균주의 완전한 유전체 염기서열을 분석하였다. 이 유전체에는 4,373 개의 코딩 서열, 22 개의 리보솜 RNA 유전자 및 84 개의 전사 RNA 유전자가 존재한다. 또한 유전체 분석 결과를 통해 살모넬라 감염과 베타락탐계 항생제 내성에 관련이 있는 유전자를 발견하였다.

CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells

  • Liu, Xuejiao;Chong, Yulong;Liu, Huize;Han, Yan;Niu, Mingshan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.161-168
    • /
    • 2016
  • Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor effects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory effects of S109 on CRM1 is reversible. Our data demonstrated that S109 significantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the effects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.

Multiplex RT-PCR Assay for the Detection of Apple stem grooving virus and Apple chlorotic leaf spot virus in Infected Korean Apple Cultivars

  • Park, Hong-Lyeol;Yoon, Jae-Seung;Kim, Hyun-Ran;Baek, Kwang-Hee
    • The Plant Pathology Journal
    • /
    • 제22권2호
    • /
    • pp.168-173
    • /
    • 2006
  • To develop the diagnostic method for the viral infection in apple, the partial genes corresponding to the N-terminal region of RNA polymerase of Apple stem grooving virus (ASGV) and coat protein of Apple chlorotic leaf spot virus (ACLSV) were characterized from the infected apple cultivars in Korea. Based on the nucleotide sequences of the characterized partial genes, the virus gene-specific primers were designed for the detection of ASGV and ACLSV infected in species of Malus. The RT-PCR using the primers for the genes of ASGV and ACLSV successfully gave rise to 404 and 566 bp DNA fragments, respectively. Using those viral gene-specific primers, the multiplex RT-PCR assays were also established to diagnose the mixed infection by ASGV and ACLSV simultaneously. Furthermore, the control primers, which have to be included for the RT-PCR as an internal control, were designed using the nucleotide sequence of the gene encoding elongation factor $1{\alpha}(EF1{\alpha})$. This multiplex RT-PCR including the control primers provides more reliable, rapid and sensitive assay for the detection of ASGV and ACLSV infected in Korean apple cultivars.