Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8007

Complete genome sequence of Salmonella Thompson strain MFDS1004024 isolated from crab-stick  

Park, Sewook (Food Microbiology Division, Ministry of Food and Drug Safety)
Lee, Woojung (Food Microbiology Division, Ministry of Food and Drug Safety)
Yoo, Ran Hee (Food Microbiology Division, Ministry of Food and Drug Safety)
Joo, In-Sun (Food Microbiology Division, Ministry of Food and Drug Safety)
Kwak, Hyo Sun (Food Microbiology Division, Ministry of Food and Drug Safety)
Kim, Soon Han (Food Microbiology Division, Ministry of Food and Drug Safety)
Publication Information
Korean Journal of Microbiology / v.54, no.2, 2018 , pp. 155-157 More about this Journal
Abstract
Salmonella enterica subsp. enterica serovar Thompson strain MFDS1004024 was isolated from crab-stick in Korean food-borne outbreak in 2014. Here, we present the complete genome sequence of strain MFDS1004024 with a size of 4,742,942 bp and a mean G + C content of 52%. The genome included 4,373 coding sequences, and 22 ribosomal RNA and 84 transfer RNA genes. Also, we found that strain MFDS1004024 has some genes for Salmonella infection and beta-lactam resistance in its genome based on the result of genome analysis.
Keywords
Salmonella enterica; food pathogen; genome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Larsen, M.V., Joensen, K.G., Zankari, E., Ahrenfeldt, J., Lukjancenko, O., Kaas, R.S., Roer, L., Leekitcharoenphon, P., Saputra, D., Cosentino, S., et al. 2017. The CGE tool box, pp. 65-90. In Applied genomics of foodborne pathogens. Springer.
2 Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964.   DOI
3 Nawrocki, E.P., Burge, S.W., Bateman, A., Daub, J., Eberhardt, R.Y., Eddy, S.R., Floden, E.W., Gardner, P.P., Jones, T.A., Tate, J., et al. 2014. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130-D137.
4 Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206-D214.   DOI
5 Schattner, P., Brooks, A.N., and Lowe, T.M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686-W689.   DOI
6 Wilson, K. 1987. Preparation of genomic DNA from bacteria. In Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (eds.), Current Protocols in Molecular Biology, Wiley & Sons, New York, 2.4.1-2.4.5.
7 Zhang, S., Yin, Y., Jones, M.B., Zhang, Z., Kaiser, B.L.D., Dinsmore, B.A., Fitzgerald, C., Fields, P.I., and Deng, X. 2015. Salmonella serotype determination utilizing high-throughput genome sequencing data. J. Clin. Microbiol. 53, 1685-1692.   DOI
8 Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C., and Hugenholtz, P. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209.   DOI
9 Aziz, R.K., Devoid, S., Disz, T., Edwards, R.A., Henry, C.S., Olsen, G.J., Olson, R., Overbeek, R., Parrello, B., Pusch, G.D., et al. 2012. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7, e48053.   DOI
10 Bairoch, A. and Apweiler, R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45-48.   DOI
11 Edgar, R.C. 2007. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8, 18.   DOI
12 Edwards, P. and Galton, M. 1966. Salmonellosis. Adv. Vet. Sci. 11, 1-63.
13 Kanehisa, M. and Goto, S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30.   DOI
14 Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., et al. 2015. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286-D293.
15 Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.   DOI