• 제목/요약/키워드: Ramp control

검색결과 193건 처리시간 0.028초

이산 슬라이딩모드 제어를 이용한 램프 미터링 제어 (Ramp Metering under Exogenous Disturbance using Discrete-Time Sliding Mode Control)

  • 김흠;좌동경;홍영대
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2046-2052
    • /
    • 2016
  • Ramp metering is one of the most efficient and widely used control methods for an intelligent transportation management system on a freeway. Its objective is to control and upgrade freeway traffic by regulating the number of vehicles entering the freeway entrance ramp, in such a way that not only the alleviation of the congestion but also the smoothing of the traffic flow around the desired density level can be achieved for the maintenance of the maximum mainline throughput. When the cycle of the signal detection is larger than that of the system process, the density tracking problem needs to be considered in the form of the discrete-time system. Therefore, a discrete-time sliding mode control method is proposed for the ramp metering problem in the presence of both input constraint in the on-ramp and exogenous disturbance in the off-ramp considering the random behavior of the driver. Simulations were performed using a validated second-order macroscopic traffic flow model in Matlab environment and the simulation results indicate that proposed control method can achieve better performance than previously well-known ALINEA strategy in the sense that mainstream flow throughput is maximized and congestion is alleviated even in the presence of input constraint and exogenous disturbance.

초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구 (Design Procedure and Analysis of Ramp Profile in SFF HDD)

  • 이용현;박경수;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.384-387
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구 (Design Procedure and Analysis of Ramp Profile in SFF HDD)

  • 이용현;박경수;박노철;양현석;박영필
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.150-155
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

Fuzzy logic을 利用한 交通 信號 control system (Traffic signal control system using fuzzy logic)

  • 文珠永;李尙培
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.180-183
    • /
    • 1996
  • This work discusses simulation results for the fuzzy logic controller tested the project“Fuzzy Ramp Metering Algorithm Implementation.”The performance objectives were, in order of priority, to maximize total vehicle-miles, maximize mainline speeds, and minimize delay per vehicle while maintaining an acceptable ramp queue. In the fuzzy logic controller, the sensors from the on-ramps were helpful in maintaining reasonable ramp queue and mainline congestion because it considered these factors simultaneously. Each metered ramp had a parameter input file, which allowed the controller to be modified without recompiling the software. Consequently, maintenance costs should be minimal.

  • PDF

추력방향제어장치인 램 탭의 개념설계 및 성능 연구 (A performance study and conceptual design on the ramp tabs of the thrust vector control)

  • 김경련;고재명;박순종;박종호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

Adaptive Sliding Mode Traffic Flow Control using a Deadzoned Parameter Adaptation Law for Ramp Metering and Speed Regulation

  • Jin, Xin;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.2031-2042
    • /
    • 2017
  • In this paper, a novel traffic flow control method based-on ramp metering and speed regulation using an adaptive sliding mode control (ASMC) method along with a deadzoned parameter adaptation law is proposed at a stochastic macroscopic level traffic environment, where the influence of the density and speed disturbances is accounted for in the traffic dynamic equations. The goal of this paper is to design a local traffic flow controller using both ramp metering and speed regulation based on ASMC, in order to achieve the desired density and speed for the maintenance of the maximum mainline throughput against disturbances in practice. The proposed method is advantageous in that it can improve the traffic flow performance compared to the traditional methods using only ramp metering, even in the presence of ramp storage limitation and disturbances. Moreover, a prior knowledge of disturbance magnitude is not required in the process of designing the controller unlike the conventional sliding mode controller. A stability analysis is presented to show that the traffic system under the proposed traffic flow control method is guaranteed to be uniformly bounded and its ultimate bound can be adjusted to be sufficiently small in terms of deadzone. The validity of the proposed method is demonstrated under different traffic situations (i.e., different initial traffic status), in the sense that the proposed control method is capable of stabilizing traffic flow better than the previously well-known Asservissement Lineaire d'Entree Autoroutiere (ALINEA) strategy and also feedback linearization control (FLC) method.

비례제어 경사응답에 기반한 공작기계의 비례-병렬 제어기 설계 (A P-Parallel Controller Design based on P-Control Ramp Response in Machine Tool)

  • 길형균;이건복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.780-785
    • /
    • 2004
  • The work presented here deals with controller design by graphical method based on proportional control ramp response. The design aims at the improvement of transient response, disturbance rejection capability, steady-state error reduction with stability preservation. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

램프 진출교통량 비율을 이용한 램프미터링 운영방안 연구 (A Study of Ramp Metering System Using Off-ramp Exit Percentage)

  • 강우진;김영찬;이민형
    • 한국ITS학회 논문지
    • /
    • 제15권6호
    • /
    • pp.102-115
    • /
    • 2016
  • 본 연구는 램프미터링 기법 중 제어 대상지 내의 진입로를 통합적으로 제어하는 시스템 통합제어에서 필요로 하는 O/D 자료를 대신하여 각 구간의 램프 진출비율을 활용한 램프미터링 방안을 제시하였다. 분석대상 구간인 서울외곽순환고속도로 계양IC~장수IC 구간은 교통량이 많고 IC간 간격이 짧아 제어구간 전체를 고려하여 통합적으로 램프를 제어하는 방법이 효과적이나 O/D 자료의 획득이 어려운 실정이다. 따라서 O/D 자료를 대신하여 램프의 진출비율을 활용하기 위해 대상지 현황 조사 및 정체현상에 대한 분석을 실시하고 램프진출비율 활용을 위한 타당성을 검증하였다. 또한 진출비율을 활용한 램프미터링 방안을 제시하고 현황 및 램프 대기행렬에 의한 하부도로 영향 고려 여부에 따른 대안을 구성하여 시뮬레이션을 실시하였다. 분석결과 본선의 통행속도와 통과교통량을 비교 분석하여 통과교통량 및 통행속도가 향상되는 결과를 보여 램프 진출비율을 활용한 램프미터링이 가능함을 확인하였다.

에너지저장장치를 이용한 풍력발전 출력 제어 성능 평가 (Assessment of performance for Output Power Control of Wind Turbine using Energy Storage System)

  • 홍종석;최창호;이주연;김재철
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.254-259
    • /
    • 2014
  • In this paper, we describe construction of a wind stabilization demo-site and effects of output power control of wind turbines for suppression of ramp rate using ESS (Energy Storage System). It is difficult to control the output power of distributed generator such as wind turbine which of variation is very large. If the large capacity wind farm be interconnected into power system may cause blackout due to Power Quality. For these reasons, the international standards such as Grid-Code is limited to less than 10 [%/min] of renewable energy ramp rate. The case of Korea, government actively conducts propagating large-scale renewable energy for green growth policy, to interconnecting more renewable energy into power system is necessary for stabilization technology. For these reasons, the POSCO consortium has constructed a wind stabilization demo-site that is configured as 500 [kWh] battery energy storage systems can output up to 3 [C-Rate] and two wind turbines rated 750 [kW]. In POSCO consortium, which implements various methods stabilizing output power of wind turbine such as smoothing, section firming and ramp control, we derive the results of long-term demonstration that can be controlled to satisfy to the international standard about ramp rate [%/kW] of wind turbine output power.

유량제어밸브 인가신호 형태가 선형펌프 방식 수중사출 시스템의 성능에 미치는 영향에 관한 수치적 연구 (Effect of Command Signal of Flow Control Valve on Performance of Underwater Discharge System using Linear Pump - Numerical Investigation)

  • 이선주;최원식
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.219-227
    • /
    • 2021
  • In the present study, the effect of command signals of the flow control valve on performance of underwater discharge systems using a linear pump was investigated numerically. For that, the improved mathematical model was developed. The improvement is to calculate the flow leakage between the water cylinder and the piston. Also the model of the hydraulic cylinder is simplified. To validate the improved model, calculation results were compared with experiment results. The results of the study is as follows: Double ramp command signals of the flow control valve had an advantage over single ramp signals. The parametric study on the effect of double ramp command signals on performance of the system was performed. In case of using double ramp signals, the maximum acceleration of the underwater vehicle was reduced by approximately 50 % compared with using single ramp signals.