• Title/Summary/Keyword: Ramberg-Osgood 모델

Search Result 23, Processing Time 0.026 seconds

Application of Modified Ramberg-Osgood Model for Master Curve of Asphalt Concrete (아스팔트 콘크리트 메스터 극선에 대한 수정 Ramberg-Osgood 모델 적용)

  • Kweon, Gi-Chul
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2008
  • The dynamic moduli of asphalt concrete are very important for the analysis and the design of asphalt pavement systems. The dynamic modulus master curve is usually represented by a sigmoidal function. The Ramberg-Osgood model was widely used for fitting of normalized modulus reduction curves with strain of soils in soil dynamic fields. The master curves were obtained by both sigmoidal functions and modified Ramberg-Osgood model for the same dynamic modulus data set, the fitting abilities of both methods were excellent. The coefficients in sigmoidal function are coupled. Therefore, it is not possible to separate the characteristics of the master curve with absolute value and shape. However, the each fitting coefficient in the Ramberg-Osgood model has a unique effect on the master curve, and the coefficients are not coupled with each other.

  • PDF

Prediction of Penetration Rate of Sheet Pile Using Modified Ramberg-Osgood Model (수정 Ramberg-Osgood 모델을 이용한 널말뚝의 관입속도 예측)

  • Lee, Seung-Hyun;Kim, Byoung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Dynamic soil resistances were simulated by modified Ramberg-Osgood model in order to predict penetration rate of sheet pile installed by vibratory pile driver. Various factors which characterize modified Ramberg-Osgood model were determined considering the shapes of dynamic soil resistance curves obtained from field test and standard penetration value (N value) was used as parameter that relates field test results to the suggested model. Penetration rates calculated by analytical model were smaller than those of field test and penetration times were vice versa. Therefore, predicted penetration rate and penetration time by analytical model are more conservative than those of filed test.

Characteristics of Dynamic Load Transfer for Vertically Vibrating Pile (연직진동말뚝의 동적 하중전이 특성)

  • Lee, Seung-Hyun;Kim, Eung-Seok;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3872-3878
    • /
    • 2014
  • In this study, the dynamic load transfer function, which is necessary for analyzing a pile installed by a vibro hammer, was determined by comparing the results of the analyses and instrumented tests. The static load transfer function was modeled by the Ramberg-Osgood model through an analytical method before determining the dynamic load transfer curve. The parameters of the Ramberg-Osgood model were correlated with the N value of the standard penetration test and average values of the correlation coefficient were 0.97 for the shaft load transfer and 0.98 for the base load transfer. The dynamic load transfer function was simulated using the modified Ramberg-Osgood model. The results showed that there were little differences in the characteristics of dynamic load transfer between the results of the measurement and prediction.

Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model (흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용)

  • 정충기;정영훈;윤충구
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.237-249
    • /
    • 2002
  • Nonlinearity and anisotropy of soil should be considered for the exact prediction of deformation before the failure state. In this study, a new constitutive model is developed in which the nonlinearity of soil is formulated by Ramberg-Osgood equation and the soil anisotropy is implemented by the cross-anisotropic elasticity. Nonlinear anisotropic model and other models for comparison are used to analyze the simple boundary value problems and the circular footing problem. In the results, the anisotropic ratio of elastic modulus is a key value for the bulk modulus of soil, the coeffcient of earth pressure at rest, and the slope of effective stress paths. Furthermore, it is found that the nonlinearity of soil considering the in-situ stresses has the great influence on the magnitude of settlements.

Enhancement of the Technique for Analyzing a Pile Driven by Vibro Hammer (진동해머에 의해 시공되는 말뚝의 해석기법 제고)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3596-3601
    • /
    • 2015
  • Enhancement of the existing program for analyzing a pile driven by vibro hammer was tried. Damping effect of dynamic soil resistance and clutch friction were added to the existing governing equation which constitute vibrating system of vibro hammer-pile-soil. Parameters of the modified Ramberg-Osgood model which simulates dynamic load transfer curves for the developed program were recomputed. Comparing the results of the modified program with those of the field tests, pile displacement with time and load transfer behavior were more similar to those of the field test. The penetration rates obtained from the modified program were more close to those of the field test rather than those of the commertical program.

An Anisotropic Hardening Elasto-Plastic Constitutive Model for the Behavior at Small-to-Large Strain Conditions (미소변형률 및 대변형률 조건의 거동에 대한 비등방경화 탄소성 구성모델)

  • 오세붕;권기철;정순용;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • An elasto-plastic constitutive model was proposed, in which the behavior at small-to-large strain level can be modeled. The proposed model is based on the anisotropic hardening description with the generalization of isotropic hardening rule and the total stress concept. From a mathematical approach it was proved that the model includes the previous successful models. The model was verified by a series of resonant column tests, torsional shear tests and triaxial tests, and the proposed model predicted small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil. In addition, the nonlinearity under small strain condition was predicted appropriately for the torsional shear test results.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method (Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • The objective of this study is to predict fracture movements accurately and reliably by nonlinear analysis of the response of RC shear wall or RC flange sections. Hognestad's and Vallenas's theories are used for concrete model and Ramberg-Osgood's theory is used for steel model. Non-linear analysis considering confined concrete and unconfined concrete is performed. Mander's Fiber Approach Section analysis, new strain profile considering the Gamma factor are used to this section analysis. The section analysis considering cases of precracked, uncracked, boundary warping and shear warping is performed.

Calculation of Damping Ratio Using Non-Linear Soil Models and Comparison between Measured and Predicted Data (흙의 비선형 모델을 이용한 감쇠비 산정 및 비교)

  • Lee, Hyoung-Kyu;Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • Several theoretical soil nonlinear models to predict damping ratio, which is one of the typical dynamic properties of soils, it is impractical to predict damping ratio. The resonant column and torsional shear test(RC-TS) is used to represent the dynamic behavior of soils from intermediate to medium shear strains. A limitation of RC-TS is measure precise shear strain in large strains and the modified equivalent radius($R_{eq}$) was obtained using both modified hyperbolic model and Ramberg-Osgood model. Bonneville clays were tested using RC-TS test to obtain rotation and torque. The measured rotation and torque were then compared with calculated rotation and torque using curve-fitting method. Then, the nonlinear soil model parameters were obtained and the equivalent radius was calculated using the model parameters.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.