• 제목/요약/키워드: Raman Spectral Classification

검색결과 8건 처리시간 0.021초

Toward Practical Augmentation of Raman Spectra for Deep Learning Classification of Contamination in HDD

  • Seksan Laitrakun;Somrudee Deepaisarn;Sarun Gulyanon;Chayud Srisumarnk;Nattapol Chiewnawintawat;Angkoon Angkoonsawaengsuk;Pakorn Opaprakasit;Jirawan Jindakaew;Narisara Jaikaew
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.208-215
    • /
    • 2023
  • Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘 (CNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift)

  • 박재현;유형근;이창식;장동의;박동조;남현우;박병황
    • 한국군사과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.264-271
    • /
    • 2021
  • Raman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift.

Surface-Engineered Graphene surface-enhanced Raman scattering Platform with Machine-learning Enabled Classification of Mixed Analytes

  • Jae Hee Cho;Garam Bae;Ki-Seok An
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.139-146
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) enables the detection of various types of π-conjugated biological and chemical molecules owing to its exceptional sensitivity in obtaining unique spectra, offering nondestructive classification capabilities for target analytes. Herein, we demonstrate an innovative strategy that provides significant machine learning (ML)-enabled predictive SERS platforms through surface-engineered graphene via complementary hybridization with Au nanoparticles (NPs). The hybridized Au NPs/graphene SERS platforms showed exceptional sensitivity (10-7 M) due to the collaborative strong correlation between the localized electromagnetic effect and the enhanced chemical bonding reactivity. The chemical and physical properties of the demonstrated SERS platform were systematically investigated using microscopy and spectroscopic analysis. Furthermore, an innovative strategy employing ML is proposed to predict various analytes based on a featured Raman spectral database. Using a customized data-preprocessing algorithm, the feature data for ML were extracted from the Raman peak characteristic information, such as intensity, position, and width, from the SERS spectrum data. Additionally, sophisticated evaluations of various types of ML classification models were conducted using k-fold cross-validation (k = 5), showing 99% prediction accuracy.

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

The classification of ballpoint pen inks in Questioned Documents by using VSC and SERRS

  • Kim, Nam Yee;Park, Sung Woo;Doble, Philip;Roux, Claude
    • 분석과학
    • /
    • 제17권4호
    • /
    • pp.315-321
    • /
    • 2004
  • The aim of this study was to investigate the evidential value of blue and black ballpoint pens on paper by nondestructive techniques. In this work, 21 blue and 22 black ballpoint pens which were purchased on different brands were analyzed by Raman Spectroscopy and Video Spectral Comparator (VSC). Surface-Enhanced Resonance Raman Spectroscopy (SERRS) with excitation at 685 nm and VSC with several spot light filters were used for the discrimination of ballpoint pen inks. In the SERR spectra, the ballpoint pen inks on paper could be shown sharp spectral bands and distinguished by their band shapes and relative intensities. In the blue and black ballpoint pen inks, the discriminating powers (DP) by SERRS were 0.85 and 0.67 and the DP by VSC were 0.88 and 0.90, respectively. The DP by combined sequence of techniques was all 0.97 in both black and blue ballpoint pen inks.

라만 스펙트럼에서 간 질병 분류를 위한 MAP과 MLP 적용 연구 (Application of MAP and MLP Classifier on Raman Spectral Data for Classification of Liver Disease)

  • 박아론;백성준;양병흠;나승유
    • 한국콘텐츠학회논문지
    • /
    • 제9권2호
    • /
    • pp.432-438
    • /
    • 2009
  • 본 연구에서는 마이크로 라만 스펙트럼을 이용한 급성 알코올성 간 손상과 만성 에탄올 간섬유증의 진단을 위해, 전처리 과정을 거친 스펙트럼으로부터 변별력 있는 피크를 추출하여 자동 분류기를 이용한 진단하는 방법을 살펴보았다. 전처리 단계에서는 기준선의 왜곡을 제거한 후 피크 보존에 유용한 Savitzky-Golay 필터를 이용하여 smoothing하였다. 전처리 후 급성 알코올성 간 손상과 만성 에탄올성 간섬유증을 구분할 수 있는 변별력 있는 스펙트럼 피크를 확인하고 이를 이용하여 MAP과 신경망으로 분류하였으며 실험 결과에 의하면 제안한 전처리 방법과 자동 분류기로 만성 에탄올성 간섬유증과 급성 알코올성 간 손상을 80% 이상 분류할 수 있었고, 이는 특징 벡터로 사용한 피크가 간 질병 진단에 사용될 수 있는 가능성을 보여준다고 할 수 있다.

인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법 (Local Region Spectral Analysis for Performance Enhancement of Dementia Classification)

  • 박준규;백성준
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5150-5155
    • /
    • 2011
  • 인지증을 유발하는 원인은 알츠하이머병(Alzheimer's Disease: AD)과 혈관성 인지증(vascular Dementia: VD)이 가장 높은 비율을 차지한다. 본 논문에서는 측정된 라만 스펙트럼에서 AD, VD, 정상(NOR: normal)을 분류하기 위해 변별력 있는 영역을 조사하고, 특징 변환을 이용한 분류 실험 결과를 제시하였다. 혈소판으로부터 측정한 라만 스펙트럼은 먼저 smoothing을 적용한 다음 배경 잡음을 제거하고 스펙트럼의 기준 피크를 중심으로 그 위치를 정렬하였고 minmax 방법을 사용하여 정규화 하였다. 전처리를 거친 스펙트럼은 AD와 VD, NOR를 변별하기 가장 용이한 영역을 결정하기 위해 조사되었으며, 그 결과 725-777, 1504-1592, 1632-1700 $cm^{-1}$ 영역에서 스펙트럼이 많은 차이를 보임을 확인하였다. 분류 실험은 선택한 각 영역에 대하여 PCA(principal component analysis)와 NMF(nonnegative matrix factorization) 방법을 적용하여 얻은 특징을 이용하여 행하였다. 총 327개의 라만 스펙트럼에 대한 MAP(maximum a posteriori probability) 분류 실험 결과에 따르면, 본 연구에서 제안된 국부 영역 변환 특징을 사용했을 때 평균 92.8 %의 분류율을 보임을 알 수 있었다.

선형 강도 교정을 이용한 라만 스펙트럼 인식 (The identification of Raman spectra by using linear intensity calibration)

  • 박준규;백성준;박아론
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.32-39
    • /
    • 2018
  • 라만 스펙트럼은 측정 장비 및 환경 조건에 따라 동일한 물질이라도 스펙트럼의 강도 차이를 보인다. 이는 라만 분광의 패턴 인식적인 접근에 제약을 주기 때문에 장비간의 호환성 및 라만 데이터베이스의 재사용을 위해 반드시 해결해야 하는 문제다. 이를 위해 이전의 주요 연구들에서는 측정 장비 간에 전달 함수를 가정하고 이를 구한 후 직접적인 스펙트럼의 교정을 수행하였다. 하지만 이 방식은 강도 왜곡을 발생시키는 다른 조건들에 대해서는 대처 할 수 없는 방법이다. 따라서 본 논문에서는 다양한 측정 조건에 보다 유연하게 대응 할 수 있는 선형 강도 교정을 이용한 분류 방법을 제안하였다. 제안한 방법의 성능 평가를 위해 실험에서는 14033종의 화학 물질에서 측정된 라만 라이브러리를 실험물질에 대한 판별 지표로 사용하였으며, 3개의 라만 분광기로부터 측정된 10종의 화학 물질 라만 스펙트럼을 실험 데이터로 사용하였다. 실험결과에 따르면 제안한 방법을 사용하였을 때 강도 왜곡된 스펙트럼에 대해 100%의 판별 성능을 보였으며, 판별된 스펙트럼에 대해서도 이전보다 높은 상관점수를 보여 사용자가 화학 물질을 판별하는 데 유용한 도구로 사용될 수 있음을 확인하였다.