• Title/Summary/Keyword: Ram Tube

Search Result 34, Processing Time 0.026 seconds

A Study on the Ram Accelerator Performance Improvement Using Numerical Optimization Techniques (수치 최적화 기법을 이용한 램 가속기 성능 향상 연구)

  • Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.77-84
    • /
    • 1999
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_0$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species lave been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced $19\%$ within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Premixture Composition Optimization for the Ram Accelerator Performance Enhancement (램 가속기 성능 향상을 위한 예 혼합기 조성비 최적화에 관한 연구)

  • 전용희;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2$, $O_2$, $N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species have been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced 19% within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Numerical Investigation of Ram Accelerator Flow Field in Expansion Tube (Expansion Tube 내의 램 가속기 유동장의 수치 연구)

  • 최정열;정인석;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.43-51
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the experiments performed to investigate the ram accelerator flow field by using the expansion tube facility in Stanford University. Navier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state assumption shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$+$O_2$+$17N_2$, it fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$+$O_2$+$12N_2$, mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. The experimental result is revealed to be an instantaneous result during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator (초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석)

  • Moon, Guee-Won;Jeung, In-Seuck;Choi, Jeong-Yeol;Seiler, Friedrich;Patz, Gunther;Smeets, Gunter;Srulijes, Julio
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Ram Accelerator Optimization Using the Response Surface Method (반응면 기법을 이용한 램 가속기 최적설계에 관한 연구)

  • Jeon Kwon-Su;Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.55-63
    • /
    • 2000
  • In this paper, the numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length, required to accelerate projectile from initial velocity V/sub 0/ to target velocity V/sub e/. The premixture is composed of H₂, O₂, N₂ and the mole numbers of these species are selected as design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and the efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error compared with analysis result is only 0.01% and it is demonstrated that present method can be applied to more practical design optimization problems with many design variables.

  • PDF

Analysis of Defect Characterization in a Rectangular Shape Flange Hydroforming Process (사각형상 플랜지 액압성형 공정 시 결함특성 분석)

  • Shin, S.G.R.;Joo, B.D.;Han, S.W.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.275-279
    • /
    • 2013
  • The tube hydroforming process has received much attention in the automotive industry because of its advantages compared to conventional manufacturing technologies. A wide range of products such as sub-frames, camshafts, radiator frames, axles and crankshafts are made by hydroforming process. The hydroformed parts often need to be structurally joined to other components during assembly. Therefore, these automotive parts need to be manufactured with a localized attachment flange. In this study, FE forming analyses of a part with a rectangular flanged shape was performed with Dynaform 5.5. Using the optimized conditions determined numerically, hydroforming experiments were performed. Then, the characterization of defects was analyzed. Finally, the accuracy of the optimized internal pressure condition as well as that of the initial ram position were evaluated. The results demonstrated that flanged parts can be successfully produced using the tube hydroforming process.

A Study on the Strategy of Content Marketing Using YouTube -Focused on Domestic Standalone Beauty Brands- (유튜브를 활용한 콘텐츠 마케팅 전략 연구 -국내 로드숍 화장품 브랜드를 중심으로-)

  • Nam, Seung Yoon;Park, Bo Ram
    • Design Convergence Study
    • /
    • v.16 no.2
    • /
    • pp.63-81
    • /
    • 2017
  • Environmental change of consuming contents has led corporates to acknowledge the possibility of social media as being marketing platform. And as the importance of 'contents' is growing bigger at the same time, 'Content Marketing' is getting attention because 'Content' plays the key role in current marketing since it can deliver meaningful values to the companies and the customers both. Many companies are practicing contents marketing employing YouTube by not only creating their own YouTube channels and YouTube contents but also collaborating with YouTube creators. Purpose of this study is to figure out how domestic standalone beauty brands that are actively practicing content marketing, are exploiting the YouTube and to suggest design direction for future YouTube content marketing. 'Etude', 'Innisfree', 'Misha', 'The Face Shop' were selected for analyzing the content marketing cases using YouTube. As a result, this study could conclude that if the brand has inadequate number of subscribers, it is better to collaborate with the creators. Also, clarifying contents' purpose and distinguishing the way of delivering it is important.