• Title/Summary/Keyword: Rainfall-induced infiltration

Search Result 44, Processing Time 0.025 seconds

Reliability and risk assessment for rainfall-induced slope failure in spatially variable soils

  • Zhao, Liuyuan;Huang, Yu;Xiong, Min;Ye, Guanbao
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.207-217
    • /
    • 2020
  • Slope reliability analysis and risk assessment for spatially variable soils under rainfall infiltration are important subjects but they have not been well addressed. This lack of study may in part be due to the multiple and diverse evaluation indexes and the low computational efficiency of Monte-Carlo simulations. To remedy this, this paper proposes a highly efficient computational method for investigating random field problems for slopes. First, the probability density evolution method (PDEM) is introduced. This method has high computational efficiency and does not need the tens of thousands of numerical simulation samples required by other methods. Second, the influence of rainfall on slope reliability is investigated, where the reliability is calculated from based on the safety factor curves during the rainfall. Finally, the uncertainty of the sliding mass for the slope random field problem is analyzed. Slope failure consequences are considered to be directly correlated with the sliding mass. Calculations showed that the mass that slides is smaller than the potential sliding mass (shallow surface sliding in rainfall). Sliding mass-based risk assessment is both needed and feasible for engineered slope design. The efficient PDEM is recommended for problems requiring lengthy calculations such as random field problems coupled with rainfall infiltration.

Unsaturated Soil Mechanics for Slope Stability

  • Rahardjo, Harianto;Satyanaga, Alfrendo;Leong, Eng-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.481-501
    • /
    • 2007
  • Excessive rainfalls due to climatic changes can trigger an increase in rainfall-induced slope failures that pose real threats to both lives and properties. Many high slopes in residual soils could stand at a steep angle, but failed during or after rainfall. Commonly, these slopes have a deep groundwater table and negative pore-water pressures in the unsaturated zone above the groundwater table contribute to the shear strength of soil and consequently to factor of safety of the slope. Stability assessment of slope under rainfall requires information on rate of rainwater infiltration in the unsaturated zone and the resulting changes in pore-water pressure and shear strength of soil. This paper describes the application of unsaturated soil mechanics principles and theories in the assessment of rainfall effect on stability of slope through proper characterization of soil properties, measurement of negative pore-water pressures, seepage and slope stability analyses involving unsaturated and saturated soils. Factors controlling the rate of changes in factor of safety during rainfall and a preventive method to minimize infiltration are highlighted in this paper.

  • PDF

Reliable Assessment of Rainfall-Induced Slope Instability (강우로 인한 사면의 불안정성에 대한 신뢰성 있는 평가)

  • Kim, Yun-Ki;Choi, Jung-Chan;Lee, Seung-Rae;Seong, Joo-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2009
  • Many slope failures are induced by rainfall infiltration. A lot of recent researches are therefore focused on rainfall-induced slope instability and the rainfall infiltration is recognized as the important triggering factor. The rainfall infiltrates into the soil slope and makes the matric suction lost in the slope and even the positive pore water pressure develops near the surface of the slope. They decrease the resisting shear strength. In Korea, a few public institutions suggested conservative slope design guidelines that assume a fully saturated soil condition. However, this assumption is irrelevant and sometimes soil properties are misused in the slope design method to fulfill the requirement. In this study, a more relevant slope stability evaluation method is suggested to take into account the real rainfall infiltration phenomenon. Unsaturated soil properties such as shear strength, soil-water characteristic curve and permeability for Korean weathered soils were obtained by laboratory tests and also estimated by artificial neural network models. For real-time assessment of slope instability, failure warning criteria of slope based on deterministic and probabilistic analyses were introduced to complement uncertainties of field measurement data. The slope stability evaluation technique can be combined with field measurement data of important factors, such as matric suction and water content, to develop an early warning system for probably unstable slopes due to the rainfall.

Evaluation of Infiltration Characteristics of Rainfall in Gneiss Weathered Soil by a Field Monitoring (현장 강우계측을 통한 편마암 풍화토층의 침투특성 평가)

  • Kim, Man-Il;Chae, Byung-Gon;Han, Byung-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.567-576
    • /
    • 2008
  • It is possible to understand rainfall infiltration characteristics by identification of wetting front in the soil. The wetting front by rainfall infiltration has close relationships among soil density, grain size distribution, and permeability coefficient in the soil. The infiltration velocity is a similar concept of permeability coefficient in the soil. In this study, infiltration velocity of rainfall was calculated by a field monitoring of volumetric water contents at the depths of 50 cm and 80 cm below the surface in the gneiss weathered soil. The calculated field infiltration velocity was compared with a permeability coefficient by a laboratory soil test using undisturbed soil samples in the study area. The permeability coefficient of the soil sample is $3.15{\times}10^{-3}cm/sec$, while the field infiltration velocity is $1.87{\times}10^{-3}cm/sec$. It is interpreted that the lower infiltration velocity is induced by complicate condition of porosity and grain size distribution of soil in the field. The rainfall intensity which influences on the volumetric water content and infiltration velocity is more than 20 mm/day resulting in expansion of wetting front in the soil.

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.55-64
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration caused by prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve (SWCC) of granite and gneiss weathered soils is investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

Influence of Rainfall-induced Wetting on Unsaturated Weathered Slopes (강우시 국내 불포화 풍화토 사면에서의 습윤영향 분석)

  • Jeong Sang-Seom;Kim Jae-Hong;Park Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.159-169
    • /
    • 2004
  • Surface failures of slopes in weathered soil are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the infiltrating water. This paper reports trends of rainfall-induced wetting band depth in two types of weathered soils that are commonly found in Korea. Both theoretical and numerical analyses are presented based on the soil-water characteristic curve (SWCC) obtained using filter paper as well as tensiometer tests. It is found that the magnitude of wetting front suction plays a key role in the stability of slopes in weathered soils. Theoretical analysis based on modified Green and Ampt model tends to underestimate the wetting band depth for typical Korean weathered soils. It was also deduced that for Korean weathered soils, the factor of safety drops rapidly once the wetting band depth of 1.2 m is reached.

Slope Stability Assessment Induced by Variation in Mountain Topography and Rainfall Infiltration (산지지형 및 강우 침투양상 변화에 따른 산지사면 안정성 평가)

  • Kim, Man-Il;Lee, Seung-woo;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Approximately 64 percent of Korean territory is covered with mountains, and there is occurred a continuous mountain disaster such as landslide, debris flow and slope failure around mountain slopes due to heavy rainfall and typhoon in the summer season. Even in such a reality, the development of mountain areas is being carried out through the development and expansion of social infrastructures centered on mountain areas, but systematic management is insufficient. Constructions of a forest road facility for mountain slopes can be a cause of mountain disasters intensively in the summer season due to artificially changing the mountain area. In this unstable mountain environment, efforts to build a disaster-resistant environment are urgently needed. This research is to analyze the stability of mountain slopes according to soil depth (1~5 m) and mountain slope ($20{\sim}60^{\circ}$) considering the characteristics of rainfall infiltration under extreme rainfall conditions. As a result, the stability of the mountain slope was found to be different according to the depth of soils and the saturation area of the soil layer. As well as the stability of the mountain area was found to be lower than that of the natural mountain area. Specially, rainfall infiltration occurs at the upper slope of the forest road. For this reason, the runoff phenomenon of rainfall infiltration water occurs clearly when the depth of soil layer is low.

A Study of Stability Analysis on Unsaturated Soil Slopes Considering Rainfall (강우를 고려한 불포화 토사사면의 안정해석 연구)

  • Kim, Khi-Woong;Kim, Bum-Joo;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common in Korea. This study examines an infinite slope analysis to estimate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Approximate method which is based on the Green-Ampt model have been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods. Pradel & Raad method which is devised to predict the depth of wetting front to decomposed granite soil slopes having measured soil-water characteristic curves. To compare the results with those obtained from the Pradel & Raad method, a series of numerical analysis using SEEP/W were carried out. It was found that the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of decomposed granite soils was found to be a proper analysis for shallow slope failures due to rainfall.

  • PDF