• Title/Summary/Keyword: Rainfall-induced Landslide

Search Result 38, Processing Time 0.022 seconds

A Combined Method for Rainfall-induced Landslides and Debris Flows in Regional-scale Areas (광역적 산사태-토석류 연계해석기법 제안)

  • Hong, Moonhyun;Jeong, Sangseom
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.17-31
    • /
    • 2019
  • This study describes a prediction method for rainfall-induced landslides and subsequently debris flows in a regional scale areas. Special attention is given to the calculation of the propagation of debris flows by considering rainfall infiltration into soil slopes and soil entrainments by debris flows. The proposed method was verified by comparing the analytical results and the measured ones reported by the previous research. As a result, predictions and observations were quite similar in terms of the front position, the velocity, volume and momentum of debris flows. Even when applied to natural mountain slope with complicated terrain, numerical results and observations were similar. At last, the combined analysis of landslides and debris flows were conducted. The landslides prediction showed a predictive rate of about 83%, and the result of the final volume of debris flow showed an error rate of 3%. As a result, the proposed combined method for landslides and debris flows overcomes the problem of separating the landslides analysis and the debris flows simulation. Especially, the proposed method can analyze the effects of rainfall on entrainments by debris flows as well as rainfall-induced landslides and the behavior of debris flows.

Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site (황령산 사면 계측관리 분석에 관한 연구)

  • La Won Jin;Choi Jung Chan;Kim Kyung Soo;Cho Yong Chan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.429-442
    • /
    • 2004
  • Landslide of the Whanpyeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category of plane failure. Automatic monitoring system to measure horizontal displacement, pore pressure change and load change has operating from reconstruction stage for evaluating rock slope stability (August, 2000$\~$Feburuary, 2002). As a result of the analysis on the monitoring performance data, it is suggested that infiltrated rain water from pound surface discharges rapidly through cut-slope because pressure head of water decreases rapidly after rainfall while rise of pore pressure is proportional to the amount of rain water. As a result of data analyses for inclinometers and load cells, it seems that slope is stablized be cause ground deformation is rarely detected. The areas especially similar to the study site where landslide is induced by heavy rain fall, change of pore pressure is rapidly analyzed using automatic monitoring system. Therefore, it is considered that automatic monitoring system is very effect for slope stability analysis on important cut-slopes.

Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area (지구물리탐사를 이용한 산사태지역의 지하수위에 따른 안정성 해석)

  • Lee, Kyoung-Mi;Kim, Hyun;Lee, Jae-Hyuk;Seo, Young-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.545-554
    • /
    • 2007
  • Landslides is mainly induced by a heavy rainfall, earthquake ground motion, and some other factors like soil mechanics, morphological-geological factors etc. Since the starting point of the failure seemed to be originated at a construction site in the study, it is meaningful to find out the relationship between the landslide and the construction. For this study, the slope failure factor was examined carefully to see that the original natural slope had vulnerability and that the complex ground had unstability changed by construction. A field survey was conducted on the original ground surface and filled-up ground. A laboratory test was also conducted to determine the geomechanical properties of soil samples. 2D and 3D limit equilibrium analysis with changing groundwater level were conducted at the failure depth using a seismic refraction survey. The result shows that the factor of safety is similar stability under all condition, but unstable under saturated condition.

Analysis of the Occurrence Characteristic of Earthquake-Induced Landslide through a Media Report : Focus on International Cases Reported in Domestic Media During the 10 years (2009-2018) (언론보도를 통한 지진에 의한 산사태 발생특성 분석 : 최근 10년(2009-2018)간 국내 언론에 보도된 국외사례를 중심으로)

  • Kang, Minjeng;Kim, Kidae;Seo, Junpyo;Woo, Choongshik;Lee, Changwoo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.440-448
    • /
    • 2020
  • Purpose: Most of the studies in the country on earthquake-induced landslide predict the displacement of the slope. Until now, no studies have been conducted on the occurrence of landslides and damage characteristics by earthquakes. Therefore, this study was conducted to obtain basic data of landslides caused by earthquakes. Method: In order to analyze the characteristics of earthquake-causing landslides, we have collected data reported in the media over the past decade. Landslides in foreign countries were analyzed separately by cause of occurrences such as rainfall and earthquake. Landslides from abroad were analyzed according to the cause of the occurrence, and landslides caused by earthquakes were further analyzed as follows: the magnitude of an earthquake, year of occurrence, number of occurrences by continent, damage status, etc. Result: In the past 10 years, a total of 608 landslides have been reported from overseas, and the cause is the highest with 340 landslides due to rainfall. There were 70 cases of landslides caused by earthquakes, and it was analyzed as the second cause of landslides. The average magnitude for earthquakes that caused landslides was 6.5, and the minimum and maximum magnitude were 4.4 and 8.2 respectively. The earthquake-induced landslides were the most occurrence in 2011yr and 2012yr, and the continent was the most common in Asia. Also, It was analyzed that if an earthquake caused landslides, the number of casualties increased and the size of the damage increased. Conclusion: Currently, earthquakes are steadily increasing in Korea, and the possibility of strong earthquakes is also increasing. Earthquake-induced landslides are beyond human control due to natural disasters but can minimize damage through active prevention and response. It is expected that the results of this study will be used as basic data in establishing measures for earthquake landslides to reduce property and human damage in the future.

Current Issues, Trends and Possibilities in Water Sector in Nepal

  • Shrestha, Hari Krishna
    • Water for future
    • /
    • v.52 no.8
    • /
    • pp.56-66
    • /
    • 2019
  • Nepal is bestowed with abundant water. With more than 1500 mm average annual rainfall in the country, a vast quantity of underutilized groundwater in the Terai belt, and the water stored in snowcaps in the Himalayas, aquifers in the mountains and glacial lakes, Nepal is potentially in an advantageous position in terms of per capita availability. However, low emphasis in management aspect of water and high emphasis in infrastructural developments related to water resources management has resulted in conversion of water in Nepal from a resource to a burden. The global climate change, reduction in number of rainy days, increase in intensity of rainfall during wet monsoon season, encroachment of river banks for settlement, inadequate release of environmental flows from hydropower plants, and attempt to tame the mighty and high velocity rivers of Nepal have resulted in increasing number of water induced disasters (flood and landslide), rise in conflict between local residents and hydropower developers, higher number of devastating landslides, and in some extreme cases mass migration of residents resulting in climate refugees. There is a ray of hope; the awareness level of the people regarding sustainable use of water resources is increasing, the benefit sharing mechanism is gradually being implemented, the role of interdisciplinary and integrated water resources management is appreciated at a higher level and the level of preparedness against flood and landslides is at a higher degree compared to a couple of decades ago. With the use of renewable energy sources, the possibilities for sustainable and productive use of water are on the rise in Nepal.

Suggestion on the Dredging Time of Sediments Behind Debris Barrier Using Rainfall Data (강우자료를 이용한 사방댐 배면 퇴적물의 준설시기 선정)

  • Song, Young-Suk;Kim, Minseok;Jung, In-Keun
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The rainfall intensity-duration curve (I-D curve) was used for selecting the dredging time of sediments behind a debris barrier which is located at the study area in Inje-gun, Kangwon Province. The I-D curve was newly suggested by using the data of rainfall-induced landslides for about 30 years from June to September in Kangwon Province. According to the monitoring results, the landslides have been not occurred during the monitoring period of the dredged sediments management system at the study area, and also all of the rainfall events were located below the I-D curve. The weight of the dredged sediments measured at the management system in the field was increased but the weight increment was small. It means that the increase of the dredged sediments was not the effect of landslide but the effect of soil erosion at the ground surface due to heavy rainfall. The weight of the dredged sediments behind a debris barrier could be known in real time using the rainfall data measured at the management system. Also, when the I-D curve is used with the management system, it is possible to select the optimum dredging time for sediments behind debris barrier.

The Preliminary Analyses on Damage Types of Stone Hertage induced by Natural Hazard, Korea (석조문화재의 자연재해 피해양상 예비분석)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Min-Seok;Yi, Sang-Heon;Kim, Jeong-Chan;Nahm, Wook-Hyun;Yang, Yun-Sik
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The severe damage of cultural heritages induced by natural hazards like heavy rain has been dramatically increased since 1990. The number of the repair works of stone heritage of 2005 was six times as many as those of 1986 year. Especially the ratio of the repair works of Gyeongsang Province and Jeolla Province stood 63% of those of all over the country. Since 1990, the typhoons usually struck the southern part of Korea and went northward. The heavy damage of stone heritages in two provinces was caused by them. We made a preliminary survey the stone heritages that exposed to the natural hazards on the basis of repair works of them and a field survey. The analysis results indicate that the natural hazards such as landslide and soil disaster of the stone heritages related to a sloping surface stood 58% of all kind of natural hazards. The reasons are caused by the 59 % of all the stone heritages distributed in a sloping surface resulted in natural hazards like landslide and soil disaster. The bases of stone heritages can be easily eroded by the surface water with high energy induced by heavy rainfall. Most of the stone heritages like Maebul were engraved on a natural rock wall(outcrop). But some of them engraved on rolling stones are very vulnerable in a change of a base condition caused by erosion and ground subsidence and they can be tilted or fell down. The distribution of the stone heritages vulnerable in natural hazard is related to that of the rainfall distribution compounded five typhoons after 1990. Most of them are included in level two on the rainfall distribution map except those of Taean peninsula and some of Gyeonggi Province. They seem to be rather related to the rainfall distribution of the Typhoon Olga.

  • PDF

A Study on Yongin -Ansung Landslides in 1991 (1991년 용인 -안성 지역 산사태 연구)

  • Park, Yong-Won;Kim, Gam-Rae;Yeo, Un-Gwang
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.103-118
    • /
    • 1993
  • This paper presents the results of investigation of the rainstorm induced landslides occurred in the districts of Yongin, Ansung and Osan on July 21st 1991. More than two thousand and sirs hundred landsilides took place during or after a 3-t hours heavy rainfall and about 466 ha mountain slopes were affected by slope failures. The result of study on the effect of-iainfall on landslides shows that landslides began to occur where daily and maximum hourly rainfall exceeded 114mm and 40mm respectively, and all districts (myun) where maximum hourly rainfall exceeded 62mm were affected by landslides. The morphological study on landslides on Talbongsan area reveals that, by Walker's classi fication using D IL(failure depth ratio), 50% of the landslides were classified as flows, 20% of them as translational slides, and 30% were between flow and slide and there were few rotational slides. Over 90% of landslides tookplace at slopes of 20$^{\circ}$-40$^{\circ}$ in slope and 50m or shorter in length And more than 50% of the crown of slides locates at higher than 0.7 times of slope hight. Any differences between the kinds of tree in landslide resisting effects are shown in this case.

  • PDF