Browse > Article
http://dx.doi.org/10.7843/kgs.2019.35.10.17

A Combined Method for Rainfall-induced Landslides and Debris Flows in Regional-scale Areas  

Hong, Moonhyun (Dept. of Civil and Environmental Eng., Yonsei Univ.)
Jeong, Sangseom (Dept. of Civil and Environmental Eng., Yonsei Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.35, no.10, 2019 , pp. 17-31 More about this Journal
Abstract
This study describes a prediction method for rainfall-induced landslides and subsequently debris flows in a regional scale areas. Special attention is given to the calculation of the propagation of debris flows by considering rainfall infiltration into soil slopes and soil entrainments by debris flows. The proposed method was verified by comparing the analytical results and the measured ones reported by the previous research. As a result, predictions and observations were quite similar in terms of the front position, the velocity, volume and momentum of debris flows. Even when applied to natural mountain slope with complicated terrain, numerical results and observations were similar. At last, the combined analysis of landslides and debris flows were conducted. The landslides prediction showed a predictive rate of about 83%, and the result of the final volume of debris flow showed an error rate of 3%. As a result, the proposed combined method for landslides and debris flows overcomes the problem of separating the landslides analysis and the debris flows simulation. Especially, the proposed method can analyze the effects of rainfall on entrainments by debris flows as well as rainfall-induced landslides and the behavior of debris flows.
Keywords
Rainfall; Landslide; Debris flow; Entrainment; Combined numerical method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bartelt, P., Buehler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., ... and Schneider, M. (2013), "RAMMS_User Manual v1. 5 Debris Flow. A numerical model for debris flows in research and practice."
2 Baum, R. L., Savage, W. Z., and Godt, J. W. (2002), "TRIGRS:a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis", US geological survey open-file report, Vol.424, pp.38.
3 Cho, S. E. and Lee, S. R. (2002), "Evaluation of Surficial Stability for Homogeneous Slopes Considering Rainfall Characteristics", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128(9), pp.756-763.   DOI
4 Crosta, G. B., Cucchiaro, S., and Frattini, P. (2003), "Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials", In Proceedings of the Third International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Davos, Switzerland. Millpress, Rotterdam, pp.821-831.
5 D'Ambrosio, D., Gregorio, S. D., and Iovine, G. (2003), "Simulating Debris Flows through a Hexagonal Cellular Automata Model: Sciddica s 3-hex", Natural Hazards and Earth System Sciences, Vol.3(6), pp.545-559.   DOI
6 Gavin, K. and Xue, J. (2008), "A Simple Method to Analyze Infiltration into Unsaturated Soil Slopes", Computers and Geotechnics, Vol.35(2), pp.223-230.   DOI
7 Hong, M. H., Kim, J. H., Jung, G. J., and Jeong, S. S. (2016), "Rainfall Threshold (ID Curve) for Landslide Initiation and Prediction Considering Antecedent Rainfall", Journal of the Korean Geotechnical Society, Vol.32(4), pp.15-27.   DOI
8 Hong, M., Kim, J., and Jeong, S. (2018), "Rainfall Intensityduration Thresholds for Landslide Prediction in South Korea by Considering the Effects of Antecedent Rainfall", Landslides, Vol. 15(3), pp.523-534.   DOI
9 Iverson, R. M. (1997), "The physics of debris flows", Reviews of geophysics, Vol.35(3), pp.245-296.   DOI
10 Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., and Griswold, J. P. (2011), "Positive Feedback and Momentum Growth during Debris-flow Entrainment of Wet Bed Sediment", Nature Geoscience, Vol.4(2), pp.116.   DOI
11 Jakob, M. and Friele, P. (2010), "Frequency and Magnitude of Debris Flows on Cheekye River, British Columbia", Geomorphology, Vol.114(3), pp.382-395.   DOI
12 Jeong, S., Kassim, A., Hong, M., and Saadatkhah, N. (2018), "Susceptibility Assessments of Landslides in Hulu Kelang Area Using a Geographic Information System-Based Prediction Model", Sustainability, Vol.10(8), pp.2941.   DOI
13 Jeong, S., Kim, Y., Lee, J. K., and Kim, J. (2015), "The 27 July 2011 Debris Flows at Umyeonsan, Seoul, Korea", Landslides, Vol. 12(4), pp.799-813.   DOI
14 Kwan, J. S. and Sun, H. W. (2006), "An Improved Landslide Mobility Model", Canadian Geotechnical Journal, Vol.43(5), pp. 531-539.   DOI
15 Kim, J., Kim, Y., Jeong, S., and Hong, M. (2017), "Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes", Environmental Earth Sciences, Vol.76(23), pp.808.   DOI
16 Kim, J., Lee, K., Jeong, S., and Kim, G. (2014), "GIS-based Prediction Method of Landslide Susceptibility Using a Rainfall Infiltration-groundwater Flow Model", Engineering Geology, Vol. 182, pp.63-78.   DOI
17 Kwan, J. S. H. (2012), "Supplementary technical guidance on design of rigid debris-resisting barriers", Geotechnical Engineering Office, HKSAR. GEO Report, No.270.
18 Major, J. J. and Pierson, T. C. (1992), "Debris flow rheology: Experimental analysis of fine-grained slurries", Water Resources Research, Vol.28(3), pp.841-857.   DOI
19 McDougall, S., Boultbee, N., Hungr, O., Stead, D., and Schwab, J. W. (2006), "The Zymoetz River landslide, British Columbia, Canada: Description and Dynamic Analysis of a Rock Slide-debris Flow", Landslides, Vol.3(3), pp.195.   DOI
20 Mein, R. G. and Larson, C. L. (1973), "Modeling infiltration during a steady rain", Water Resources Research, Vol.9(2), pp.384-394.   DOI
21 Miller, D. J. and Burnett, K. M. (2008), "A Probabilistic Model of Debris-flow Delivery to Stream Channels, Demonstrated for the Coast Range of Oregon, USA", Geomorphology, Vol.94(1-2), pp. 184-205.   DOI
22 Muntohar, A. S. and Liao, H. J. (2009), "Analysis of Rainfall-induced Infinite Slope Failure during Typhoon Using a Hydrologicalgeotechnical Model", Environmental Geology, Vol.56(6), pp.1145-1159.   DOI
23 Stoffel, M. and Beniston, M. (2006), "On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: a case study from the Swiss Alps", Geophysical Research Letters, Vol.33(16).
24 O'brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993), "Two-Dimensional Water Flood and Mudflow Simulation", Journal of Hydraulic Engineering, Vol.119(2), pp.244-261.   DOI
25 Park, D. W., Lee, S. R., Vasu, N. N., Kang, S. H., and Park, J. Y. (2016), "Coupled Model for Simulation of Landslides and Debris Flows at Local Scale", Natural Hazards, Vol.81(3), pp. 1653-1682.   DOI
26 Pierce, J. L., Meyer, G. A., and Jull, A. T. (2004), "Fire-induced Erosion and Millennial-scale Climate Change in Northern Ponderosa Pine Forests", Nature, Vol.432(7013), pp.87.   DOI
27 Takahashi, T. and Das, D. K. (2014), "Debris flow: mechanics, prediction and countermeasures", CRC press.
28 Wang, Y. (1993), Personal cummunication (Takahashi and Das, 2014).