• Title/Summary/Keyword: Rainfall-Runoff Analysis

Search Result 786, Processing Time 0.033 seconds

Runoff Analysis Based on Rainfall Estimation Using Weather Radar (기상레이더 강우량 산정법을 이용한 유출해석)

  • Kim, Jin Geuk;Ahn, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.7-14
    • /
    • 2006
  • The radar relationship was estimated for the selected rainfall event at Yeongchun station within Chungjudam basin where the discharge record was the range of from 1,000 CMS to 9,000 CMS. By calibrating the rainfall coefficient parameter estimated by radar relationship in small hydrology basin, rainfall with the topography properties was calculated. Three different rainfall estimation methods were compared:(1) radar relationship method (2) Thiessen method (3) Isohyetal method (4) Inverse distance method. Basin model was built by applying HEC-GeoHMS which uses digital elevation model to extract hydrological characteristic and generate river network. The proposed basin model was used as an input to HEC-HMS to build a runoff model. The runoff estimation model applying radar data showed the good result. It is proposed that the radar data would produce more rapid and accurate runoff forecasting especially in the case of the partially concentrated rainfall due to the atmospheric change. The proposed radar relationship could efficiently estimate the rainfall on the study area(Chungjudam basin).

Analysis on the Runoff of Urban Watershed using MIKE SWMM Model (MIKE SWMM모형을 이용한 도시유역 유출분석에 관한 연구)

  • Kim Jong Seok;Choe Gyeong Rok;Ahn Jae Hyun;Moon Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.862-866
    • /
    • 2005
  • For urban watershed models, the ILLUDAS and SWMM are the popular rainfall-runoff models used in Korea. However, combined sewage systems in urban areas produced problems when a flood occured because of the surcharged precipitation amount which drained to the streams directly. Also, the lack of pipe line data and the difficulties of modeling yield inappropriate modeling results in urban runoff analysis. In addition, rainfall-runoff models in urban areas which use channel routing could have inaccurate and complicated processes. In this paper, the MIKE SWMM model has been applied for the stable runoff analysis of urban areas. Watershed and pipe line data were established by using past inundated records, DEM data, and the numerical pipe line data. For runoff modelings, the runoff block was adapted to a basin and the Extran block using dynamic equations was applied to the sewage system. After comparing to models that exist, it is concluded that the MIKE SWMM model produces reliable and consistence results without distorting the Parameters of the model.

  • PDF

Runoff Analysis of Urban Watershed using MIKE SWMM Model (MIKE SWMM 모형을 이용한 도시유역 유출분석에 관한 연구)

  • Kim, Jong-Suk;Ahn, Jae-Hyun;Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.907-916
    • /
    • 2005
  • For an urban watershed modeling, the ILLVDAS and SWMM model were the popular rainfall-runoff models using in Korea. However, combined sewerage systems in urban area produce some problems when a flood event happens because of the surcharged precipitation amounts which drain to streams directly. Also, rack of pipe line data and difficulties of modeling yield inappropriate modeling results in urban runoff analysis. In addition, rainfall-runoff models in an urban which using channel routing could be inaccurate and complicated processes. In this paper, the MIKE SWMM model has been applied for a stable urban area runoff analysis. Watershed and pipe line data were established by using past inundated records, DEM data and numerical pipe line data. For a runoff modeling, the Runoff block was adapted to a basin and the Extran block using dynamic equation was applied for sewerage system. After a comparisons against existing models yield that the MIKE SWMM model produce reliable and consistence results without distorting parameter of the model.

Calculation of Runoff in Flood Basin Using GIS (GIS를 활용한 홍수유역의 유출량 산정)

  • 이형석;김인호
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • In order to investigate the effect of a pouring rain that it follows in the typhoon, the effect analysis with actual measurement data of rainfall outflow it follows in flood basin is necessary. Also there is a case that it analyzes with the fact that the rainfall occurs identically in whole basin in case of the rainfall outflow analysis, but the actual rainfall distribution from the basin very will be irregular and the interpretation which it reflects must become accomplished. It created spatial information of terrain, land use and the soil using GIS. It created topographical factor of the subject area and calculated CN(runoff curve number) with WMS(Watershed Modeling System). It calculated runoff using a HEC-1 model and the Rational Method connected at the WMS. By connecting GIS and WMS, it calculated the effect of a pouring rain and runoff from the construction area. Also it will be able to apply with a basic data in more efficient runoff analysis.

  • PDF

Convolution Interpretation of Nonparametric Kernel Density Estimate and Rainfall-Runoff Modeling (비매개변수 핵밀도함수와 강우-유출모델의 합성곱(Convolution)을 이용한 수학적 해석)

  • Lee, Taesam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • In rainfall-runoff models employed in hydrological applications, runoff amount is estimated through temporal delay of effective precipitation based on a linear system. Its amount is resulted from the linearized ratio by analyzing the convolution multiplier. Furthermore, in case of kernel density estimate (KDE) used in probabilistic analysis, the definition of the kernel comes from the convolution multiplier. Individual data values are smoothed through the kernel to derive KDE. In the current study, the roles of the convolution multiplier for KDE and rainfall-runoff models were revisited and their similarity and dissimilarity were investigated to discover the mathematical applicability of the convolution multiplier.

Analysis to Select Filter Media and The Treatment Effect of Non-point Pollution Source in Road Runoff

  • Lee, Tae Goo;Han, Young Hae
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.55-63
    • /
    • 2014
  • This study selected and analyzed filter media that can be applied in non-point pollution reduction devices aimed at processing the source of pollution on site for road runoff that increases rapidly in rainfall-runoff in order to improve the water quality of urban areas. First, the factors that affect the quality of runoff caused by sources of non-point pollution include physical and social factors such as the usage of land around the area of water collection, type of pavement and movement of cars and people, as well as rainfall characteristics such as frequency, intensity, amount and duration of rainfall. Second, the purification tests of the filter media were processed for pH, BOD, COD and T-P, and the filter media showed to have initial purification effect at that items. However, the filter media showed to be very effective for the processing of SS, T-N, Zn and Cd from the beginning to the end. Third, for filter media, zeolite and vermiculite showed to be effective for processing SS, T-N, Zn and CD constantly, and composite filter media including zeolite showed to have strong processing effects. The authors conclude that this study can be applied to technical areas and policies aimed at reducing non-point pollution in urban areas and can also contribute to allowing eco-friendly management of rainfall as well as improvement of water quality.

Comparative Analysis of Estimation Methods for Basin Averaged Effective Rainfall Using NRCS-CN Method (NRCS-CN 방법을 이용한 유역평균 유효우량 산정기법의 비교·분석)

  • Moon, Geon-Woo;Yoo, Ji-Young;Ahn, Jae-Hyun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.493-503
    • /
    • 2014
  • The NRCS-CN method is generally applied for estimating effective rainfalls in practice, in which the basin-averaged CN is normally used. In order to develop a more appropriate method for estimating effective rainfalls in a basin, this study compared estimated effective rainfalls from two distinct methods with the observed direct runoff. The first method is to estimate the basin-representative effective rainfall using the basin-averaged CN (hereafter, effective rainfall I), whereas the second method to estimate the basin-averaged effective rainfall through areal-averaging sub-area effective rainfalls corresponding to the soil type and landuse type (hereafter, effective rainfall II). The overall results indicated that the effective rainfall II was higher than the effective rainfall I and closer to the observed direct runoff. The study also performed error analyses to verify that the effective rainfall II can be applied in practice in a basin as more accurate estimate of basin-representative effective rainfall.

Runoff Analysis Using a Distributed Rainfall-Runoff Model (분포형 강우-유출 모형에 의한 유출 해석)

  • 신사철
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.131-139
    • /
    • 1996
  • The main goal of this study is a rainfall-runoff analysis using atopographically-based distributed model. It consists of two parts: one is a direct runoff submodel and the other is a baseflow submodel. The direct runoff submodel is a distributed model which routed through the drainage networks with a kinematic wave model. The baseflow submodel is considered as a lumped system. This model makes it possible to take the effect of areal and temporal distribution of storm into accout.

  • PDF

A Study on the Safety Management of Streamflows by the Kalman Filtering Theory (Kalman Filtering 이론에 의한 하천 유출 안전관리에 관한 연구)

  • 박종권;박종구;이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 1996
  • The purpose of this study has been studied and investigated to prediction algorithms of the Kalman Filtering theory which are based on the state-vector description, including system identification, model structure determination, parameter estimation. And the prediction algorithms applied of rainfall-runoff process, has been worked out. The analysis of runoff process and runoff prediction algorithms of the river-basin established, for the verification of prediction algorithms by the Kalman Filtering theory, the observed historical data of the hourly rainfall and streamflows were used for the algorithms. In consisted of the above, Kalman Filtering rainfall-runoff model applied and analysised to Wi-Stream basin in Nak-dong River(Basin area : $472.53km^2$).

  • PDF

Study on Runoff Characteristics of Nonpoint Sources during Rainfall in Anyangchun Watershed (안양천 유역의 강우시 비점오염원에 따른 유출부하특성에 관한 연구)

  • Hwang, Byung-Gi;Yu, Se-Jin;Cha, Young-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.223-234
    • /
    • 2001
  • In this study, we conducted a survey to examine the runoff characteristics of nonpoint sources, which wash off pollutants from the surface of basin during rainfall and affect water pollution of streams. An Anyangchun basin in the region Ewiwang City was selected as a study site. The basin divided into several subbasins such as Wanggokchun, Ojeonchun, and Anyangchun based on the tributaries, which confluence to the main stream of Anyangchun. Four times of field examination had been carried out between July and August of 2000, and water quality data collected from the surveys had been analysed. The survey includes in-situ flow, DO and PH measurements in the outlet of catchment. Laboratory analysis includes BOD, TN, TP. From the result, pollutant by runoff of nonpoint sources were washed out along with stormwater in the beginning of rainfall, and flowed into streams resulted in stream pollution. In case of BOD, the load from Ojeonchun catchment, most of which included urban areas, took up 50% of the total load from the entire watershed. Thus, by the results, it is clear that runoff load by urban nonpoint sources plays an important role in the control and management of nonpoint sources for the watershed.

  • PDF