DOI QR코드

DOI QR Code

Convolution Interpretation of Nonparametric Kernel Density Estimate and Rainfall-Runoff Modeling

비매개변수 핵밀도함수와 강우-유출모델의 합성곱(Convolution)을 이용한 수학적 해석

  • 이태삼 (경상대학교 토목공학과 ERI)
  • Received : 2015.05.20
  • Accepted : 2015.06.12
  • Published : 2015.06.30

Abstract

In rainfall-runoff models employed in hydrological applications, runoff amount is estimated through temporal delay of effective precipitation based on a linear system. Its amount is resulted from the linearized ratio by analyzing the convolution multiplier. Furthermore, in case of kernel density estimate (KDE) used in probabilistic analysis, the definition of the kernel comes from the convolution multiplier. Individual data values are smoothed through the kernel to derive KDE. In the current study, the roles of the convolution multiplier for KDE and rainfall-runoff models were revisited and their similarity and dissimilarity were investigated to discover the mathematical applicability of the convolution multiplier.

수문학에서 사용되는 강우-유출 모델의 경우 선형적인 시스템을 기반으로 유효강수량으로부터 시간적 지연을 통해서 유출량이 결정되는데 그 양은 강우량의 선형적인 비로 표현되어서 결국 합성곱을 통해 해석되게 된다. 또한 자료에 대한 확률론적 분석에 많이 이용되는 비매개변수 핵밀도함수의 경우, 핵(Kernel)의 의미자체가 합성곱에서 나온 것으로서 개개의 자료를 바탕으로 핵을 통해 매끄러운 확률밀도함수를 구하게 된다. 본 연구에서는 합성곱을 바탕으로 강우-유출 모델과 비매개변수 확률밀도함수를 해석하는 방법에 대해서 되짚어 보고 그 공통적인 특성과 다른 점을 수학적으로 나타내 줌으로써 사용되는 합성곱 함수의 유용성에 대해서 논하였다.

Keywords

References

  1. Adamowski, K. (1996) Nonparametric estimation of low-flow frequencies. Journal of Hydraulic Engineering-Asce, 122(1), 46-49. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(46)
  2. Adamowski, K. (2000) Regional analysis of annual maximum and partial duration flood data by nonparametric and Lmoment methods. Journal of Hydrology, 229(3-4), 219-231. https://doi.org/10.1016/S0022-1694(00)00156-6
  3. Adamowski, K. and Feluch, W. (1990) Nonparametric flood frquency analysis with historical information. Journal of Hydraulic Engineering-Asce, 116(8), 1035-1047. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:8(1035)
  4. Bras, R.L. (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley Publishing Company, Reading, MA, 643 pp.
  5. Kottegoda, N.T. and Rosso, R. (2008) Applied Statistics for Civil and Environmental Engineers. Wiley-Blackwell, West Sussex, United Kingdom, 736 pp.
  6. Lall, U., Moon, Y.I. and Bosworth, K. (1993) Kernel Flood Frequency Estimators - Bandwidth Selection and Kernel Choice. Water Resources Research, 29(4), 1003-1015. https://doi.org/10.1029/92WR02466
  7. Lee, T., Salas, J.D. and Prairie, J. (2010) An Enhanced Nonparametric Streamflow Disaggregation Model with Genetic Algorithm. Water Resources Research, 46, W08545.
  8. Lee, T.S. (2008) Stochastic simulation of hydrologic data based on nonparametric approaches, Ph. D. Dissertation, Colorado State University, Fort Collins, CO., USA, 346 pp.
  9. Moon, Y.I. and Lall, U. (1994) Kernel Quantile Function Estimator for Flood Frequency-Analysis. Water Resources Research, 30(11), 3095-3103. https://doi.org/10.1029/94WR01217
  10. Moon, Y.I., Lall, U. and Bosworth, K. (1993) A Comparison of Tail Probability Estimators for Flood Frequency-Analysis. Journal of Hydrology, 151(2-4), 343-363. https://doi.org/10.1016/0022-1694(93)90242-2
  11. Rao, A.R. and Hamed, K.H. (2000) Flood Frequency Analysis. CRC Press, New York, 350 pp.
  12. Salas, J.D. and Lee, T. (2010) Nonparametric Simulation of Single-Site Seasonal Streamflows. Journal of Hydrologic Engineering, 15(4), 284-296. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000189
  13. Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis : Monographs on Statistics and Applied Probability. Chapman and Hall, London, 175 pp.