• Title/Summary/Keyword: Rainfall time series

Search Result 202, Processing Time 0.031 seconds

Comparative Analysis of Supervised and Phenology-Based Approaches for Crop Mapping: A Case Study in South Korea

  • Ehsan Rahimi;Chuleui Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.179-190
    • /
    • 2024
  • This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 normalized difference vegetation index (NDVI) images were calculated from the Sentinel-2A data. Next, we employed phenology-based approaches to extract valuable information from the NDVI time series. A set of 10 phenology metrics was extracted from the NDVI data. For the supervised classification, we employed the maximum likelihood (MaxLike) algorithm. For the phenology-based approaches, we implemented both pixel-based and segment-based methods. The results indicate that phenology-based approaches outperformed the MaxLike algorithm in regions with frequent rainfall and cloudy conditions. The segment-based phenology approach demonstrated the highest kappa coefficient of 0.85, indicating a high level of agreement with the ground truth data. The pixel-based phenology approach also achieved a commendable kappa coefficient of 0.81, indicating its effectiveness in accurately classifying the crop types. On the other hand, the supervised classification method (MaxLike) yielded a lower kappa coefficient of 0.74. Our study suggests that segment-based phenology mapping is a suitable approach for regions like South Korea, where continuous cloud-free satellite images are scarce. However, establishing precise classification thresholds remains challenging due to the lack of adequately sampled NDVI data. Despite this limitation, the phenology-based approach demonstrates its potential in crop classification, particularly in regions with varying weather patterns.

Aboveground Net Primary Productivity and Spatial Distribution of Chaco Semi-Arid Forest in Copo National Park, Santiago del Estero, Argentina

  • Jose Luis Tiedemann
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • According to the REDD+ program, it is necessary to monitor, quantify, and report forest conditions in protected land areas. The objectives of this work were to quantify the average monthly aerial net primary productivity (ANPPMONTH) of semi-arid Chaco Forest at Copo National Park (CNP), Santiago del Estero, Argentina, during the period 2000-2023, as well as its spatial distribution and relationship, and its use efficiency (RUE) of average monthly rainfall (AMR). The ANPPMONTH model accounted for 90% of the seasonal variability from October to May, the average seasonal ANPPMONTH was 145 tons of dry matter per hectare (t dm/ha), being the maximum in January with 192 t dm/ha and the minimum in May with 91 t dm/ha. The surface area covered by ANPPMONTH exhibited a consistent positive trend from October to May (t test=15.65, p<0.01). Strong and significant direct relationships were found between ANPPMONTH and AMRs, linear models explaining 90% and 96% of the variability, respectively. The results obtained become reference values for assessing the capacity of the forest systems to stock carbon for global warming mitigation and for monitoring and controlling their response to extreme climatic adversities. The average ANPPMONTH reduces uncertainty when defining the thresholds to monitor and quantify ANPP and forest area, thus facilitating the detection of negative changes in land use in CNP. Such results evidence the National Parks Administration's high effectiveness for the maintenance of protected area and for the high ANPP of the FCHS of CNP in the period 2000-2023.

Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments (확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석)

  • Maeng, Seung-Jin;Hwang, Ju-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1009-1019
    • /
    • 2009
  • In this research, various characteristics of South Korea's design flood have been examined by deriving appropriate design flood, using data obtained from careful observation of actual floods occurring in selected main watersheds of the nation. 19 watersheds were selected for research in Korea. The various characteristics of annual rainfall were analyzed by using a moving average method. The frequency analysis was decided to be performed on the annual maximum flood of succeeding one year as a reference year. For the 19 watersheds, tests of basic statistics, independent, homogeneity, and outlier were calculated per period of annual maximum flood series. By performing a test using the LH-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, among applied distributions of Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distribution was found to be adequate compared with other probability distributions. Parameters of GEV distribution were estimated by L, L1, L2, L3 and L4-moment method based on the change in the order of probability weighted moments. Design floods per watershed and the periods of annual maximum flood series were derived by GEV distribution. According to the result of the analysis performed by using variation rate used in this research, it has been concluded that the time for changing the design conditions to ensure the proper hydraulic structure that considers recent climate changes of the nation brought about by global warming should be around the year 2002.

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.

A Study on derivation of drought severity-duration-frequency curve through a non-stationary frequency analysis (비정상성 가뭄빈도 해석 기법에 따른 가뭄 심도-지속기간-재현기간 곡선 유도에 관한 연구)

  • Jeong, Minsu;Park, Seo-Yeon;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • This study analyzed past drought characteristics based on the observed rainfall data and performed a long-term outlook for future extreme droughts using Representative Concentration Pathways 8.5 (RCP 8.5) climate change scenarios. Standardized Precipitation Index (SPI) used duration of 1, 3, 6, 9 and 12 months, a meteorological drought index, was applied for quantitative drought analysis. A single long-term time series was constructed by combining daily rainfall observation data and RCP scenario. The constructed data was used as SPI input factors for each different duration. For the analysis of meteorological drought observed relatively long-term since 1954 in Korea, 12 rainfall stations were selected and applied 10 general circulation models (GCM) at the same point. In order to analyze drought characteristics according to climate change, trend analysis and clustering were performed. For non-stationary frequency analysis using sampling technique, we adopted the technique DEMC that combines Bayesian-based differential evolution ("DE") and Markov chain Monte Carlo ("MCMC"). A non-stationary drought frequency analysis was used to derive Severity-Duration-Frequency (SDF) curves for the 12 locations. A quantitative outlook for future droughts was carried out by deriving SDF curves with long-term hydrologic data assuming non-stationarity, and by quantitatively identifying potential drought risks. As a result of performing cluster analysis to identify the spatial characteristics, it was analyzed that there is a high risk of drought in the future in Jeonju, Gwangju, Yeosun, Mokpo, and Chupyeongryeong except Jeju corresponding to Zone 1-2, 2, and 3-2. They could be efficiently utilized in future drought management policies.

A Study on Estimating Rice Yield in DPRK Using MODIS NDVI and Rainfall Data (MODIS NDVI와 강수량 자료를 이용한 북한의 벼 수량 추정 연구)

  • Hong, Suk Young;Na, Sang-Il;Lee, Kyung-Do;Kim, Yong-Seok;Baek, Shin-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.441-448
    • /
    • 2015
  • Lack of agricultural information for food supply and demand in Democratic People's republic Korea(DPRK) make people sometimes confused for right and timely decision for policy support. We carried out a study to estimate paddy rice yield in DPRK using MODIS NDVI reflecting rice growth and climate data. Mean of MODIS $NDVI_{max}$ in paddy rice over the country acquired and processed from 2002 to 2014 and accumulated rainfall collected from 27 weather stations in September from 2002 to 2014 were used to estimated paddy rice yield in DPRK. Coefficient of determination of the multiple regression model was 0.44 and Root Mean Square Error(RMSE) was 0.27 ton/ha. Two-way analysis of variance resulted in 3.0983 of F ratio and 0.1008 of p value. Estimated milled rice yield showed the lowest value as 2.71 ton/ha in 2007, which was consistent with RDA rice yield statistics and the highest value as 3.54 ton/ha in 2006, which was not consistent with the statistics. Scatter plot of estimated rice yield and the rice yield statistics implied that estimated rice yield was higher when the rice yield statistics was less than 3.3 ton/ha and lower when the rice yield statistics was greater than 3.3 ton/ha. Limitation of rice yield model was due to lower quality of climate and statistics data, possible cloud contamination of time-series NDVI data, and crop mask for rice paddy, and coarse spatial resolution of MODIS satellite data. Selection of representative areas for paddy rice consisting of homogeneous pixels and utilization of satellite-based weather information can improve the input parameters for rice yield model in DPRK in the future.

Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA (HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가)

  • Byon, Jae-Young;Kim, Tae-Jun;Kim, Jin-Uk;Kim, Do-Hyun
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.367-385
    • /
    • 2022
  • This study evaluates the temperature and precipitation results in East Asia simulated from the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) developed by the UK Met Office. The HadGEM3-RA is conducted in the Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II domain for 15 year (2000-2014). The spatial distribution of rainbands produced from the HadGEM3-RA by the summer monsoon is in good agreement with the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APRODITE) data over the East Asia. But, precipitation amount is overestimated in Southeast Asia and underestimated over the Korean Peninsula. In particular, the simulated summer rainfall and APRODITE data show the least correlation coefficient and the maximum value of root mean square error in South Korea. Prediction of temperature in Southeast Asia shows underestimation with a maximum error during winter season, while it appears the largest underestimation in South Korea during spring season. In order to evaluate local predictability, the time series of temperature and precipitation compared to the ASOS data of the Seoul Meteorological Station is similar to the spatial average verification results in which the summer precipitation and winter temperature underestimate. Especially, the underestimation of the rainfall increases when the amounts of precipitation increase in summer. The winter temperature tends to underestimate at low temperature, while it overestimates at high temperature. The results of the extreme climate index comparison show that heat wave is overestimated and heavy rainfall is underestimated. The HadGEM3-RA simulated with a horizontal resolution of 25 km shows limitations in the prediction of mesoscale convective system and topographic precipitation. This study indicates that improvement of initial data, horizontal resolution, and physical process are necessary to improve predictability of regional climate model.

A study on a tendency of parameters for nonstationary distribution using ensemble empirical mode decomposition method (앙상블 경험적 모드분해법을 활용한 비정상성 확률분포형의 매개변수 추세 분석에 관한 연구)

  • Kim, Hanbeen;Kim, Taereem;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.253-261
    • /
    • 2017
  • A lot of nonstationary frequency analyses have been studied in recent years as the nonstationarity occurs in hydrologic time series data. In nonstationary frequency analysis, various forms of probability distributions have been proposed to consider the time-dependent statistical characteristics of nonstationary data, and various methods for parameter estimation also have been studied. In this study, we aim to introduce a parameter estimation method for nonstationary Gumbel distribution using ensemble empirical mode decomposition (EEMD); and to compare the results with the method of maximum likelihood. Annual maximum rainfall data with a trend observed by Korea Meteorological Administration (KMA) was applied. As a result, both EEMD and the method of maximum likelihood selected an appropriate nonstationary Gumbel distribution for linear trend data, while the EEMD selected more appropriate nonstationary Gumbel distribution than the method of maximum likelihood for quadratic trend data.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.

Independent Component Analysis of Nino3.4 Sea Surface Temperature and Summer Seasonal Rainfall (Nino3.4지역 SST 및 여름강수량의 독립성분분석)

  • Kwon Hyun-Han;Moon Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.985-994
    • /
    • 2005
  • We examined problems of the principal component analysis(PCA), which is able to analyze at the low dimensionality as a methodologv to assess hydrologic time series, and introduced the theory and characteristics of independent component analysis(ICA) that can supplement problems of principal component analysis. We also applied the global sea surface temperature(SST) of the Nino region and assessed the correlation between El $\tilde{n}ino$-Southern Oscillation(ENSO) and SST. The results of examining separation-ability of principal components using mixed signals indicate that the independent component analysis is statistically superior compared to that of the principal component analysis. Finally, we assessed correlation between ENSO and global anomaly SST. The independent component analysis was applied to the $5^{\circ}{\times}5^{\circ}$(latitude and longitude) global anomaly SST in the Nino+3.4 region that is the El $\tilde{n}ino$ observation section. We assessed the correlation with the ENSO years. These results of the analysis show that only one independent component($86\%$) was able to represent the entire behavior and was consistent with the main ENSO years. Finally, we carried out independent component analysis for summer seasonal rainfalls at nine stations and could extract ICs to reflect geographical characteristics. The increasing trend has been shown at IC-1 and IC-2 since 1970s.