• Title/Summary/Keyword: Rainfall slope test

Search Result 98, Processing Time 0.025 seconds

Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area (지구물리탐사를 이용한 산사태지역의 지하수위에 따른 안정성 해석)

  • Lee, Kyoung-Mi;Kim, Hyun;Lee, Jae-Hyuk;Seo, Young-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.545-554
    • /
    • 2007
  • Landslides is mainly induced by a heavy rainfall, earthquake ground motion, and some other factors like soil mechanics, morphological-geological factors etc. Since the starting point of the failure seemed to be originated at a construction site in the study, it is meaningful to find out the relationship between the landslide and the construction. For this study, the slope failure factor was examined carefully to see that the original natural slope had vulnerability and that the complex ground had unstability changed by construction. A field survey was conducted on the original ground surface and filled-up ground. A laboratory test was also conducted to determine the geomechanical properties of soil samples. 2D and 3D limit equilibrium analysis with changing groundwater level were conducted at the failure depth using a seismic refraction survey. The result shows that the factor of safety is similar stability under all condition, but unstable under saturated condition.

Overseas Design Introduction of Road Rehabilitation Project in Keshim~Faizabad, Afghanistan (아프가니스탄 케심-파이자베드간 도로복구사업 해외설계 사례)

  • Jeong, Dong-Ho;Kim, Woo-Sun;Kim, Gee-Baek;Jeong, Won-Joon;Lee, Seung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.569-580
    • /
    • 2008
  • If slope height was more than 20 meters, we conducted an analysis of stereographic projection and limit equilibrium at this slope. We proposed reduction of slope face angle and reinforcement of rock bolt depending on analysis. Blasting design : Standard pattern based on result of local test blasting was made for blasting design. Vibration criterion was set for less than 3.0mm/s because of outworn buildings and inhabitants opinions. Production blasting and Controlled blasting has been done as Construction standard pattern. After Vibration Monitoring has been done, so that we can control of complement. "Bidding Document" and AASHTO 2001 "A Policy on Geometric Design of Highways and Streets" were so for design criteria of earthwork but they were different actual design criteria and left something to be desired in Afghanistan. Therefore, although "Bidding Document" and "AASHTO 2001" were basic design criteria, domestic design criteria was reflected in this design criteria for complement by discussion with supervisor. Drainage design : For stability ratio, ditch of arch block and stonework was designed by rainfall data for the 13 years and discussion with supervisor. Pavement was designed as flexible pavement. Because these days in Afghanistan postwar repair works, especially urgent repairing of roads and newly making of roads, are very highly in progress, I think that Afghanistan is the region about which our construction technical experts should have great concerns.

  • PDF

Strength and Durability Test of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트의 강도 및 내구성 실험)

  • Hyun-Sang, Yoo;Tae-Hee, Kang;Hyuk-Sang, Jung;In-Chul, Back
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.79-91
    • /
    • 2022
  • Recently, the frequency of damage to slopes for highways, railways, and complexes has been increasing according to abnormal climates such as heavy rainfall or snowfall. Rapid Hardening Composite Mat (RHCM) could be a satisfactory alternative because it has the advantages that large-scale earthwork is not essential and the period for restoration is minimized. Also, this method does not require heavy machines and a phase of maintenance for slopes against the shotcrete method or planted slope protection, which are representative slope protection methods. Furthermore, the curing time is shorter than Geosynthetic Concrete Composite Mat (GCCM). Therefore, RHCM could be useful for emergency restoration work. Thus, in this study, the strength and duration of RHCM are estimated, compared, and analyzed with GCCM. As a result of the laboratory test, the strength of RHCM is greater 51%, and the duration is larger 69% than GCCM.

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.

Long-term Variations of Water Quality Parameters in Lake Kyoungpo (경포호에서 수질변수들의 장기적인 변화)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.95-107
    • /
    • 2015
  • In order to identify long-term trends of water quality parameters in Lake Kyeongpo, Mann-Kendall test, Sen's slope estimator and linear regression were applied on data, with 15 parameters from three different sites and rainfall, monitored once in every two months from March to November during 1998~2013. Seasonal variation analysis only used Mann-Kendall test and Sen's slope estimator. Analysis result showed that salinity, transparency and nutrient variables (total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen) were only parameters having statistically significant trend. In linear regression analysis, salinity (surface and bottom layer of all sites) and transparency (only at site 1), were figured out with statistically significant increasing trend, while in non-parametric statistical method, salinity and transparency in all sites (surface, middle, deep) were figured out with statistically significant increasing trend. Water quality parameters showing statistically significant decreasing trends were dissolved oxygen (surface layer of site 1 and bottom layer of sites 2 and 3), total phosphorus (sites 1 and 2), dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the linear regression analysis and, dissolved oxygen (bottom layer of all sites), total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the non-parametric method. Seasonal trend analysis result showed that salinity, turbidity, transparency and suspended solids in spring, salinity, transparency, nitrate nitrogen and suspended solids in summer and temperature, salinity, transparency and suspended solids in fall were the variables depending on the season with increasing trends. In general, rainfall during the research period showed decreasing trend. The significant reduction trends of nutrients in Lake Kyeongpo were believed to be related to lagoon restoration and water management project run by Gangneung city and under-water wear removal, but further detailed studies are needed to know the exact causes.

Analysis on the Rainfall Triggered Slope Failure with a Variation of Soil Layer Thickness: Flume Tests (강우로 인한 조립토 사면에서의 토층 두께 변화에 따른 사면의 활동 분석: 실내 모형실험)

  • SaGong, Myung;Yoo, Jea-Ho;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • Slope failure depends upon the climatic features related to related rainfall, structural geology and geomorphological features as well as the variation of the mechanical behaviors of soil constituting a slope. In this paper, among many variables, effects of soil layer thickness on the slope failure process, and variations of matric suction and volumetric water content were observed. When the soil layer is relatively thick, the descending wetting front decreases matric suction and the observed matric suction reaches to "0" value. When the wetting front reaches to the impermeable boundary, the bottom surface of steel soil box, ascending wetting front was observed. This observation can be postulated to be the effects of various sizes of pores. When macro size pores exist, the capillary effects can be reduced and infilling of pore will be limited. The partially filled pores would be filled with water during the ascending of the wetting front, which bounces from the impermeable boundary. This assumption has been assured from the observation of variation of the volumetric water contents at different depth. When the soil layer is thick (thickness = 20 cm), for granular material, erosion is a cause triggering the slope failure. It has been found that the initiation of erosion occurs when the top soil is fully saturated. Meanwhile, when the soil layer is shallow (thickness = 10 cm), slope slides as en mass. The slope failure for this condition occurs when the wetting front reaches to the interface between the soil layer and steel soil box. As the wetting front approaches to the bottom of soil layer, reduction of shear resistance along the boundary and increase of the unit weight due to the infiltration occur and these produce complex effects on the slope failure processes.

A Case Study of The Collapsed Reinforced-Soil Retaining Wall (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • This paper deal with the analysis of the causes about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extraction from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy, which are causes of the collapse.

  • PDF

A Study of Characteristic of Friction Angles between Sand and Artificial Rock Interface by Direct Shear Test (직접전단시험에 의한 모래와 인공암석 경계면의 마찰각 특성 연구)

  • Yang, Hong-Suk;Lee, Byok-Kyu;Jang, Seung-Jin;Lee, Su-Gon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.65-73
    • /
    • 2012
  • Soil-rock interface, mainly founded in Granite region of Korea, is known as one of the important factor of the slope failure at the rainfall due to smaller shear strength than soil itself. However, research of the effect on slope stability by soil-rock interfaces is insufficient. Therefore, a series of direct shear tests were performed in order to investigate the effect of soil-rock interface on slope stability. The method of tests is to get sand itself and sand-artificial rock interface shear strength from different grain size of sands and artificial rock samples. The results of tests show that the friction angle of interface depends primarily on particle size and surface roughness. Interface friction angle ratio ${\mu}(={\delta}/{\Phi})$ is in the range of 0.75 ~ 0.96, this results indicate that interface friction angle is smaller than sand itself.

Effect of Rainfall-Induced Infiltration on Unsaturated Weathered Soils with Varying Clay Contents (강우시 점토함유량에 따른 화강풍화토의 불포화 침투 특성)

  • 유남동;정상섬;김재홍;박성완
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, experiments on the SWCC were performed in order to find out the characteristics of unsaturated soil and to analyze the stability of unsaturated weathered slopes with rainfall-induced wetting. Several soil types classified by mixture portion of clay (CH) in the weathered soil (SW) were used in experimental tests. To achieve the SWCC, the filter paper method was used on SW with varying clay contents. A tensiometer test was used for measuring wetting front suction of the soils in a laboratory with varying relative densities. Based on the experimental results, it is shown that the wetting front suction increases as clay contest of mixture soil increases : in particular, the wetting front suction increases sharply as the clay contents increase. It is also found that wetting front suction affects the initial wetting band depth and stability of the slope.

Comparison of Prediction Models for Identification of Areas at Risk of Landslides due to Earthquake and Rainfall (지진 및 강우로 인한 산사태 발생 위험지 예측 모델 비교)

  • Jeon, Seongkon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.15-22
    • /
    • 2019
  • In this study, the hazard areas are identified by using the Newmark displacement model, which is a predictive model for identifying the areas at risk of landslide triggered by earthquakes, based on the results of field survey and laboratory test, and literature data. The Newmark displacement model mainly utilizes earthquake and slope related data, and the safety of slope stability derived from LSMAP, which is a landslide prediction program. Backyang Mt. in Busan where the landslide has already occurred, was chosen as the study area of this research. As a result of this study, the area of landslide prone zone identified by using the Newmark displacement model without earthquake factor is about 1.15 times larger than that identified by using LSMAP.