• Title/Summary/Keyword: Rainfall protection

Search Result 96, Processing Time 0.026 seconds

PH Characteristics of Precipitation in Seoul Area (서울 지역에 내린 우수 pH 특성)

  • Lee, Min-Hee;Eiji, Hirai;Motoichi, Miyazaki;Tetsuri, Chahji;Hao, Quan
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 1994
  • Rainwater was collected in Seoul area from January 1991 to December 1993 (over 3years) and by the analysis of the chemical components contained in rainwater, investigated the components that effect on rainwater pH Through the above studies the following conclusions were obtained. 1) Method for Averaging pH Volume weighted method is considered to be acceptable providing that precipitation is measured at the same time when the samples are taken, without precipitation data a simple averaging method should be the next choice. 2) Annual average rainwater pH was 4.98 in 1991, 4.80 in 1992, 4.67 in 1993, measurement range was 3.6-8.1. 3) In the relationship between rainwater pH and rainfall amounts rainwater pH for light rain(<15mm rainfall) was existent in the wide range(pH 4-7), but for heavy rain was corresponded to the annual average values. 4) Annual frequency of pH was Birrndat the frequency($\gamma $) between the density of the [$H^{+}$] and pH in the rainwater(over 3years ), $NO_{3}^{-}$ was excellent and the obtained results was 0.62 in 1992. Also In the correlation coefficient($\gamma $) according to the pH range $SO_{4}^{2-}, NO_{3}^{-}$, were 0.85 ,0.68 at 3.6 $Cl^-$ was 0.99(1993). At 4.1$NO_{3}^{-}(\gamma=0.48)$ in 1992, SO_4^{2-}($\gamma$=0.54), $NO_{3}^{-}(\gamma$=0.72), $Cl^- (\gamma$=0.49) in 1993. 6) pH values gradually increased with increase in $Ca^{2+}/SO_{4}^{2-}$.

  • PDF

Runoff of Azoxystrobin Applied in Pepper Field-lysimeter (고추 재배 포장 라이시메타를 이용한 Azoxystrobin의 유출 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Son, Kyeong-Ae;Gil, Geun-Hwan;Ihm, Yang-Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • To investigate runoff losses of azoxystrobin from the field by rainfall, the influence of slope degree and length on runoff rate of azoxystrobin from the pepper field were measured. The SC type formulation was applied at the pepper field lysimeter in 2004 and 2005. The azoxystrobin washed down from plant were from 21% to 68% of what the applied. Concentrations of azoxystrobin in the first runoffs were less than $50{\mu}gL^{-1}$. Runoff losses were from 0.26% to 0.59% for 10% slope-plots, from 0.66% to 0.96% for 20% slope-plots, and from 0.84% to 1.78% for 30% slope-plots. Then they decreased with increasing slope-length. Runoff loss of azoxystrobin was closely related to volume of runoff, it was reduced by the ridge and the mulching effect.

Cumulative Deposition of $^{137}Cs$ in the Soil of Korea (한국토양에 존재하는 $^{137}Cs$ 방사능 분포)

  • Lee, Myung-Ho;Choi, Yong-Ho;Shin, Hyun-Sang;Kim, Sang-Bog;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • The cumulative deposition of $^{137}Cs$ in the soil of Korea has been studied. Using ${\gamma$-ray spertrometry, the conrentrations of $^{137}Cs$ were determined for the soil samples collected to a depth of 20 cm. The average accumulated depositions of $^{137}Cs$ were estimated roughly to be 2,501 ${\pm}$ $m^{-2}$ in the forest and 1,058 ${\pm}$ 322 Bq $m^{-2}$ in the hill. The inventory value of $^{137}Cs$ in the forest is about two times higher than that in the hill. Except for some cases, the concentrations of $^{137}Cs$ in the undisturbed soils decreased exponentially with increasing the soil depth. The influences of rainfall, organic matter content, clay content and pH on the deposition of $^{137}Cs$ were studied using the field method. Among these factors, the organic matter content played the most important role in the retention and relative mobility of $^{137}Cs$ in the soil. The other factors such as rainfall, clay content and pH showed weak correlation with the deposition of $^{137}Cs$ in the soil.

  • PDF

Gamma-ray Exposure Rate Monitoring by Energy Spectra of NaI(Tl) Scintillation detectors

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.158-165
    • /
    • 2017
  • Background: Nuclear facilities in South Korea have generally adopted pressurized ion chambers to measure ambient gamma ray exposure rates for monitoring the impact of radiation on the surrounding environment. The rates assessed with pressurized ion chambers do not distinguish between natural and man-made radiation, so a further step is needed to identify the cause of abnormal variation. In contrast, using NaI(Tl) scintillation detectors to detect gamma energy rates can allow an immediate assessment of the cause of variation through an analysis of the energy spectra. Against this backdrop, this study was conducted to propose a more effective way to monitor ambient gamma exposure rates. Materials and Methods: The following methods were used to analyze gamma energy spectra measured from January to November 2016 with NaI detectors installed at the Korea Atomic Energy Research Institute (KAERI) dormitory and Hanbat University. 1) Correlations of the variation of rates measured at the two locations were determined. 2) The dates, intervals, duration, and weather conditions were identified when rates increased by $5nSv{\cdot}h^{-1}$ or more. 3) Differences in the NaI spectra on normal days and days where rates spiked by $5nSv{\cdot}h^{-1}$ or more were studied. 4) An algorithm was derived for automatically calculating the net variation of the rates. Results and Discussion: The rates measured at KAERI and Hanbat University, located 12 kilometers apart, did not show a strong correlation (coefficient of determination = 0.577). Time gaps between spikes in the rates and rainfall were factors that affected the correlation. The weather conditions on days where rates went up by $5nSv{\cdot}h^{-1}$ or more featured rainfall, snowfall, or overcast, as well as an increase in peaks of the gamma rays emitted from the radon decay products of $^{214}Pb$ and $^{214}Bi$ in the spectrum. This study assumed that $^{214}Pb$ and $^{214}Bi$ exist at a radioactive equilibrium, since both have relatively short half-lives of under 30 minutes. Provided that this assumption is true and that the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from the radionuclides have proportional count rates, no man-made radiation should be present between the two energy levels. This study proved that this assumption was true by demonstrating a linear correlation between the count rates of these two gamma peaks. In conclusion, if the count rates of these two peaks detected in the gamma energy spectrum at a certain time maintain the ratio measured at a normal time, such variation can be confirmed to be caused by natural radiation. Conclusion: This study confirmed that both $^{214}Pb$ and $^{214}Bi$ have relatively short half-lives of under 30 minutes, thereby existing in a radioactive equilibrium in the atmosphere. If the gamma peaks of the 352 keV and 1,764 keV gamma rays emitted from these radionuclides have proportional count rates, no man-made radiation should exist between the two energy levels.

Comparison of Runoff Models for Small River Basins (소하천 유역에서의 유출해석모형 비교)

  • 강인식
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.209-221
    • /
    • 1996
  • It may be difficult to make exact estimates of peak discharge or runoff depth of a flood and to establish the proper measurement for the flood protection since water stages or discharges have been rarely measured at small river basins in Korea. Three small catchments in the Su-Young river basin in Pusan were selected for the study areas. Various runoff parameters for the study areas were determined, and runoff analyses were performed using three different runoff models available in literatures; the storage function method, the discrete, linear, input-output model, and the linear reservoir model. The hydrographs calculated by three different methods showed good agreement with the observed flood hydrographs, indicating that the models selected are all capable of sucessfully modeling the flood events for small watersheds. The storage function method gave the best results in spite of its weakness that it could not be applicable to small floods, while the linear reservoir model was found to provide relatively good results with less parameters. The capabilities of simulating flood hydrographs were also evaluated based on the effective rainfall from the storage function parameters, the $\Phi$-index method, and the constant percentage method. For the On-Cheon stream watershed, the storage function parameters provided better estimates of effective rainfall for regenerating flood hydrographs than any others considered in the study. The $\Phi$-index method, however, resulted in better estimates of effective rainfall for the other two study areas.

  • PDF

A Study on the Peak Runoff Reduction Effect of Seolleung·Jeongneung Zone by Applying LID(Low Impact Development) System based on the Landscape Architectural Technology (조경기술기반 LID 시스템 적용을 통한 선릉·정릉 권역의 첨두유출량 분석)

  • Kim, Tae-Han;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.126-133
    • /
    • 2017
  • This study analyzed hydrological changes of stormwater runoff of Seolleung Jeongneung zone according to the application of LID system based on landscape Architectural technology. The results are as follows. First, when flooding occurred in Gwanghwamun in July 27, 2011, the maximum instantaneous rainfall amount was 183 mm/hr recorded at 10:00 on 27th for 10 minutes, and it was confirmed that rainfall intensity more than three times as high as the maximum rainfall of 57.5 mm/hr. Second, it is possible to control peak flow rate in the case of 1,500mm of soil thickness, so that it is possible to improve the vulnerability of flood damage in Seolleung and Jeongneung zone when applying the LID system. Third, in the berm height scenario, peak flow rate control was not controled in all depth level models, but the first stormwater runoff was delayed by 4 hours and 10 minutes compared to the soil thickness scenario. It was interpreted as a relatively important indicator the soil thickness for the initial stromwater runoff reduction and the berm height for the peak runoff. Through this, the systematic adaptation of landscape-friendly ecological factors within the cultural property protection zone could theoretically confirm the effects of flood disaster prevention.

Flood Runoff Computation for Mountainous Small Basins using WMS Model (WMS 모형을 활용한 산지 소하천 유역의 유출량 산정)

  • Chang, Hyung Joon;Lee, Jung Young;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.9-15
    • /
    • 2021
  • The frequency of flash floods in mountainous areas is increasing due to the abnormal weather that occurs increasingly in the recent, and it causes human and material damages is increasing. Various plans for disaster mitigation have been established, but artificial plans such as raising embankment and dredging operation are inappropriate for valleys and rivers in national parks that prioritize nature protection. In this study, flood risk assessment was conducted for Gyeryongsan National Park in Korea using the WMS (Watershed Modeling System)which is rainfall runoff model for valleys and rivers in the catchment. As the result, it was simulated that it is flooding in three sub-catchments (Jusukgol, Sutonggol, Dinghaksa) of a total in Gyeryongsan National Park when rainfall over the 50 years return period occurs, and it was confirmed that the risk of trails and facilities what visitors are using was high. The risk of trails in national parks was quantitatively presented through the results of this study, and we intend to present the safe management guidelines of national parks in the future.

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

Model for assessing the contamination of agricultural plants by accidentally released tritium (삼중수소 사고유출로 인한 농작물 오염 평가 모델)

  • Keum, Dong-Kwon;Lee, Han-Soo;Kang, Hee-Suk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • A dynamic compartment model was developed to appraise the level of the contamination of agricultural plants by accidentally released tritium from nuclear facility. The model consists of a set of inter-connected compartments representing atmosphere, soil and plant. In the model three categories of plant are considered: leafy vegetables, grain plants and tuber plants, of which each is modeled separately to account for the different transport pathways of tritium. The predictive accuracy of the model was tested through the analysis of the tritium exposure experiments for rice-plants. The predicted TFWT(tissue free water tritium) concentration of the rice ear at harvest was greatly affected by the absolute humidity of air, the ratio of root uptake, and the rate of rainfall, while its OBT(organically bound tritium) concentration the stowing period of the ear, the absolute humidity of air and the content of hydrogen in the organic phase. There was a good agreement between the model prediction and the experimental results lot the OBT concentration of the ear.

An Analysis of Radio Interference in the Rain Radars (강우 레이더 전파간섭 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The interference among the rain radars and interference in the adjacent wireless station due to the spurious signals from the rain radar were analyzed in this paper. The rain radar measures the rain intensity using S-band signal. The measured data are utilized in forecasting the rainfall. The interference among the rain radars or in the adjacent wireless stations may be caused by the operation with low elevation angle and the high output power. Based on the propagation analysis of S band signal and the deduced interference protection ratio of rain radar, the interference due to the rain radar are analyzed. Also, the radiation spectrum characteristics of a rain radar are deduced from the caused interference effects by the spurious signals of the rain radar. To minimize the interference effects for adjacent wireless stations, it is required to get the rejection characteristics of spurious signals above 105 dB. In viewpoints of interference for rain radars, it is necessary to operate the rain radar with a different PRF and operation time opposite to adjacent rain radars.