• Title/Summary/Keyword: Rainfall infiltration

Search Result 393, Processing Time 0.027 seconds

Shear Strength of Weathered Granite Soil Considering Change of Saturation (포화도 변화를 고려한 화강풍화토의 전단강도)

  • Kim, Minwook;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.5-14
    • /
    • 2010
  • This study was aimed to suggest reliable information of shear strength characteristics due to change of saturation in the landfills or slopes during rainfall infiltration. According to the Mohr-Coulomb failure criteria, the characteristics of shear strength due to change of saturation were analyzed for the weathered residual soils which were sampled in the road construction site of Daejeon city. From the direct shear strength tests, the cohesions and the shear resistance angles were showed maximum values in the condition of optimum moisture content, and then decreased in the condition of wet side compaction. In this study, the cohesions were decreased more than 50% according to increasing saturation by infiltration for the compaction soils. But the reductions of the shear resistance angles were about $1{\sim}2^{\circ}$ which was small value, and thus the changes of the saturation were not nearly influenced the shear resistance angle. The influences of the saturation were seemed to very small for the residual strength parameters according to Mohr-Coulomb failure criteria.

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

Estimation of Submarine Groundwater Discharge in Il-Gwang Watershed Using Water Budget Analysis and Rn Mass Balance (물 수지 방법과 라돈 물질수지 방법을 이용한 일광유역의 해저용출수 평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Lee, Yong-Woo;Hamm, Se-Yeung;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1165-1182
    • /
    • 2011
  • The evaluation of potential submarine groundwater is an important research topic for exploring an alternative water resource. Two different approaches, water budget analysis and Rn mass balance method, were employed to investigate the annual variation of submarine groundwater discharge in 2010 at a marine watershed located at the south-eastern part of Korean Peninsula. In order to obtain reliable hydrological data during study period, temporal and spatial variations of rainfall and soil moisture had been collected and hydro-meterological data such as temperature, humidity and wind speed were collected The runoff response was simulated using SCS-CN method with spatial distributions of landuse and soil texture from GIS analysis. Six different methods were used to estimate the monthly variation of evapotranspiration and field measurements of soil moisture were used to account for the infiltration. Comparisons of infiltration and surface runoff between simulation and water balance with measurements showed coincidence. The water budget analysis and Rn mass balance method provide mean daily submarine groundwater as 5.35 and 4.07 $m^3/m/day$ in 2010, respectively.

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation (답전윤환 인삼재배 예정지 토양의 물 이동특성 평가)

  • Hur, Seung-Oh;Lee, Yun-Jeong;Yeon, Byung-Ryul;Jeon, Sang-Ho;Ha, Sang-Geon;Kim, Jeong-Gyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

Deformation Characteristics of a Slope at a Coal Waste Depot through Analysis of Monitoring Results (계측결과 분석을 통한 석탄폐석 적치장 사면의 변형 특성)

  • Cho, Yong-Chan;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Deformation of a slope at a coal waste depot and the natural slope under the depot was surveyed and investigated at Dogye village in Samcheock city, Gangwon Province. To investigate the behaviors of the slopes, wire sensors and a rain gauge were installed on the crest of the waste depot slope and inclinometers were installed in the natural slope. The results of deformation monitoring at the crest of the waste depot slope using wire sensors revealed increased deformation with increasing cumulative rainfall. The results of monitoring horizontal deformation of the natural slope revealed that maximum horizontal deformation was also affected by cumulative precipitation. However, the groundwater level at the natural slope showed no change with rainfall. These measurements confirm that deformation at coal mine waste depots is closely related to precipitation, indicating that self-loading at such depots increases with rainfall infiltration, thus causing deformation of the waste depot slope. In addition, increasing the self-load of the coal mine waste depot may cause deformation of the underlying natural slope.

Assessment of Landslide Susceptibility of Physically Based Model Considering Characteristics of the Unsaturated Soil (불포화지반 특성을 고려한 물리적 사면 모델 기반의 산사태 취약성 분석)

  • Kim, Jin Seok;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.49-59
    • /
    • 2014
  • Rainfall-induced landslides are caused by reduction of effective stress and shear strength due to rainfall infiltration. In order to analyze the susceptibility of landslides, the statistical analysis approach has been used widely but this approach has the limitation which cannot take into account of landslide triggering mechanism. Therefore, the physically based model which can consider the process of landslide occurrence was proposed and commonly used. However, the most previous physically based model analyses evaluate and consider the strength characteristics for saturated soil only in the susceptibility analysis. But the strength parameters for unsaturated soil such as matric suction should be considered with the strength parameters for saturated soil since the shear strength in unsaturated soil also plays important role in the stability of slope. Consequently this study suggested the modified physically based slope model which can evaluate strength characteristics for both of saturated and unsaturated soils. In addition, this study evaluated the thickness of saturated part in slope with rainfall intensity and hydraulic characteristics of slope on the basis of physically based model. In order to evaluate the feasibility, the proposed model was applied to practical example in Jinbu area, Gangwon-do, which was experienced large amount of landslides in July 2006. The ROC graph analysis was used to evaluate the validation of the model, and the analysis results were compared with the results of the previous analysis approach.

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (II) - Model Calibration and Application - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(II) -모형의 검정 및 적용-)

  • Seo, Gyu-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.253-267
    • /
    • 1998
  • In this study, ILLUDAS and SWMM were applied for Dongsucheon basin, Incheon and Test basin, Cheongju. The main parameters (II, IA, IS, SI, SR, SS) which are included in those of each model depending on runoff results were determined, and sensitivity ratios were estimated in order to evaluate and compare the characteristics of each modEL. Total runoff ratio for almost parameters turned out to have a linear relation to the rainfall durations and the scale of basin area but have nothing to do with rainfall distributions. Sensitivity ratios turned out to have a linear relation for the infiltration and soil parameters of ILLUDAS as well as all parameters of SWMM. ronoff sensitivity ratios for almost parameters were smaller than 1.0 because the impacts of total runoff were bigger than those of peak runoff. And runoff sensitivity ratio was equal to 1.0 for the roughness coefficient of SWMM. Total runoff ratio, peak runoff ratio and runoff sensitivity ratio for the selected parameters of those models were presented asthe tables and figures according to the scale of basin area, rainfall durations such as 60, 120, and 180 minutes and Huff's 4th quartiles rainfall distributions. Keywords : ILLUDAS, SWMM, parameter, sensitivity analysis, sensitivity ratio.

  • PDF

Landslide Susceptibility Assessment Considering the Saturation Depth Ratio by Rainfall Change (강우변화에 따른 토층 내 침투깊이를 고려한 산사태위험지수 개발)

  • Kwak, Jae Hwan;Kim, Man-Il;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • Understanding rain infiltration into the ground is an important feature of landslide risk evaluation. In this study, a landslide risk index for the study area is suggested, wherein the result of the landslide risk evaluation, based on the factor of safety (FS), is used. The landslide risk index is a landslide risk prediction index that utilizes the saturated depth ratio of the ground. Based on the landslide risk result for the study area, it was found that the FS was first to decrease. However, it gradually became convergent over the 50-year rainfall intensity study period, a result that is similar to the relationship between the saturated depth ratio and soil thickness. Moreover, saturated depth was also found to be deeper on gentle slopes than steep slopes. As such, the landslide risk index, based on the Inhu-ri study result, is thus suggested. Additionally, the suggested landslide risk index was compared and analyzed against the rainfall intensity of previous landslide experience. Results thus revealed that almost all landslides that occurred were over 0.7, which is the second grade, based on the landslide risk index.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.