• Title/Summary/Keyword: Rainfall infiltration

Search Result 393, Processing Time 0.024 seconds

Distributed GIS-Based Watershed Rainfall-Runoff Model Development and Its Calibration using Weather Radar (기상레이더와 지형정보시스템을 이용한 분포형 강우-유출 유역모형의 개발과 검정)

  • Skahill, Brian E.;Choi, Woo-Hee;Kim, Min-Hwan;Kim, Sung-Kyun;Johnson, Lynn E.
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.285-300
    • /
    • 2003
  • An event-based, kinematic, infiltration-excess, and distributed rainfall-runoff model using weather radar and Geographic Information System(GIS) was developed to acknowledge and account lot the spatial variability and uncertainty of several parameters relevant to storm surface runoff and surface flow The developed model is compatible with raster GIS and spatially and temporally varied rainfall data. To calibrate the model, Monte Carlo simulation and a likelihood measure are utilized; allowing for a range of possible system responses from the calibrated model. Using rain gauge adjusted radar-rainfall estimates, the developed model was applied and evaluated to a limited number of historical events for the Ralston Creek and Goldsmith Gulch basins within the Denver Urban Drainage and Flood Control District (UDFCD) that contain mixed land use classifications. While based on a limited number of Monte Carlo simulations and considered flood events, Nash and Sutcliffe efficiency score ranges of -0.19∼0.95 / -0.75∼0.81 were obtained from the calibrated models for the Ralston Creek and Goldsmith Gulch basins, based on a comparison of observed and simulated hydrographs. For the Ralston Creek and Goldsmith Gulch basins, Nash and Sutcliffe efficiency scores of 0.88/0.10, 0.14/0.71, and 0.99/0.95 for runoff volume, peak discharge, and time to peak, respectively, were obtained from the model.

A Combined Method for Rainfall-induced Landslides and Debris Flows in Regional-scale Areas (광역적 산사태-토석류 연계해석기법 제안)

  • Hong, Moonhyun;Jeong, Sangseom
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.17-31
    • /
    • 2019
  • This study describes a prediction method for rainfall-induced landslides and subsequently debris flows in a regional scale areas. Special attention is given to the calculation of the propagation of debris flows by considering rainfall infiltration into soil slopes and soil entrainments by debris flows. The proposed method was verified by comparing the analytical results and the measured ones reported by the previous research. As a result, predictions and observations were quite similar in terms of the front position, the velocity, volume and momentum of debris flows. Even when applied to natural mountain slope with complicated terrain, numerical results and observations were similar. At last, the combined analysis of landslides and debris flows were conducted. The landslides prediction showed a predictive rate of about 83%, and the result of the final volume of debris flow showed an error rate of 3%. As a result, the proposed combined method for landslides and debris flows overcomes the problem of separating the landslides analysis and the debris flows simulation. Especially, the proposed method can analyze the effects of rainfall on entrainments by debris flows as well as rainfall-induced landslides and the behavior of debris flows.

A Generalized Model on the Estimation of the Long - term Run - off Volume - with Special Reference to small and Medium Sized Catchment Areas- (장기만연속수수량추정모형의 실용화 연구 -우리나라 중소유역을 대상으로-)

  • 임병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.27-43
    • /
    • 1990
  • This study aimed at developing a generalized model on the estimation of the long - term run - off volume for practical purpose. During the research period of last 3 years( 1986-1988), 3 types of estimation model on the long - term run - off volume(Effective rainfall model, unit hydrograph model and barne's model for dry season) had been developed by the author. In this study, through regressional analysis between determinant factors (bi of effective rainfall model, ai of unit hydrograph model and Wi of barne's model) and catchment characteris- tics(catchment area, distance round the catchment area, massing degree coefficient, river - exte- nsion, river - slope, river - density, infiltration of Watershed) of 11 test case areas by multiple regressional method, a new methodology on the derivation of determinant factors from catchment characteristics in the watershed areas having no hydrological station was developed. Therefore, in the resulting step, estimation equations on run - off volume for practical purpose of which input facor is only rainfall were developed. In the next stage, the derived equations were applied on the Kang - and Namgye - river catchment areas for checking of their goodness. The test results were as follows ; 1. In Kang - river area, average relative estimation errors of 72 hydrographs and of continuous daily run - off volume for 245 days( 1/5/1982 - 31/12) were calculated as 6.09%, 9.58% respectively. 2. In Namgye - river area, average relative estimation errors of 65 hydrographs and of conti- nuous daily run - off volume for 2fl days(5/4/1980-31/12) were 5.68%, 10.5% respectively. In both cases, relative estimation error was averaged as 7.96%, and so, the methodology in this study might be hetter organized than Kaziyama's formula when comparing with the relative error of the latter, 24~54%. However, two case studies cannot be the base materials enough for the full generalization of the model. So, in the future studies, many test case studies of this model should he carries out in the various catchment areas for making its generalization.

  • PDF

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River (황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정)

  • Ahn, Taejin;Cho, Byung Doon;Lyu, Heui Jeong
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2005
  • This paper is to present the determination of the optimal loss rate parameters and unit hydrographs from the observed single rainfall-runoff event using optimization model. The linear program models has been formulated to derive the optimal unit hydrographs and loss rate parameters for the site of the Su-Jik Bridge in the HwangGuJichen River; one minimizes the summation of the absolute residual between predicted and observed runoff ordinates. In the perturbation stage of parameters the trial and error method has been adopted to determine the loss rate parameters for Kostiakov's, Philip's, Horton's, and Green-Ampt's equation. The unique unit hydrograph ordinates for a given rainfall-runoff event is exclusively obtained with ${\Phi}$ index, but unit hydrograph ordinates depend upon the parameters for each loss rate equations. In this paper the single rainfall-runoff event observed from the sample watershed is considered to test the proposed method. The optimal unit hydrograph obtained by the optimization model has smaller deviations than the ones by the conventional method.

  • PDF

Prediction of Saturation Time for the Soil Slopes due to Rainfalls (지속적인 강우에 의한 토사사면의 포화시간 예측)

  • Park, Sungwon;Han, Taekon;Kim, Hongtaek;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.67-74
    • /
    • 2007
  • Many studies for slope stability studies have indicated that the infiltration of rainwater into a slope decrease the slope stability. In order to minimize damage caused by slope failure, most design codes suggest that the slope stability be analyzed by saturated condition during rainy season. However it would be excessively conservative condition that every soil slope is saturated in rainy season irrespective of rainfall intensity, soil type and slope geometry. In addition, because most soil slopes are in an unsaturated state, it is necessary to consider the unsaturated characteristics of slope. This paper suggests a prediction method of saturation time for the weathered granite soil slopes due to rainfalls. The finite element analysis of transient water flow through unsaturated slope was used to investigate effects of soil-water characteristics, permeability at saturation, slope geometry, and rainfall intensity. From the result of these analyses, the prediction charts considering soil-water characteristics, permeability at saturation, and slope height were proposed in this study. It is possible to the time required to be saturated slope after rainfall.

  • PDF

Development of GPU-accelerated kinematic wave model using CUDA fortran (CUDA fortran을 이용한 GPU 가속 운동파모형 개발)

  • Kim, Boram;Park, Seonryang;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.887-894
    • /
    • 2019
  • We proposed a GPU (Grapic Processing Unit) accelerated kinematic wave model for rainfall runoff simulation and tested the accuracy and speed up performance of the proposed model. The governing equations are the kinematic wave equation for surface flow and the Green-Ampt model for infiltration. The kinematic wave equations were discretized using a finite volume method and CUDA fortran was used to implement the rainfall runoff model. Several numerical tests were conducted. The computed results of the GPU accelerated kinematic wave model were compared with several measured and other numerical results and reasonable agreements were observed from the comparisons. The speed up performance of the GPU accelerated model increased as the number of grids increased, achieving a maximum speed up of approximately 450 times compared to a CPU (Central Processing Unit) version, at least for the tested computing resources.

Analysis of the potential landslide hazard after wildfire considering compound disaster effect (복합재해 영향을 고려한 산불 후 산사태 잠재적 피해 위험도 분석)

  • Lee, Jong-Ook;Lee, Dong-Kun;Song, Young-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • Compound disaster is the type that increases the impact affected by two or more hazard events, and attention to compound disaster and multi-hazards risk is growing due to potential damages which are difficult to predict. The objective of this study is to analyze the possible impacts of post-fire landslide scenario quantitatively by using TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis), a physics-based landslide model. In the case of wildfire, soil organic material and density are altered, and saturated hydraulic conductivity decrease because of soil exposed to high temperature. We have included the change of soil saturated hydraulic conductivity into the TRIGRS model through literature review. For a case study, we selected the area of $8km^2$ in Pyeongchang County. The landslide modeling process was calibrated before simulate the post-wildfire impact based on landslide inventory data to reduce uncertainty. As a result, the mean of the total factor of safety values in the case of landslide was 2.641 when rainfall duration is 1 hour with rainfall intensity of 100mm per day, while the mean value for the case of post-wildfire landslide was lower to 2.579, showing potential landslide occurrence areas appear more quickly in the compound disaster scenario. This study can be used to prevent potential losses caused by the compound disaster such as post-wildfire debris flow or landslides.

Sensitivity Analysis for Parameter of Rainfall-Runoff Model During High and Low Water Level Season on Ban River Basin (한강수계의 고수 및 저수기 유출모형 매개변수 민감도 분석)

  • Choo, Tai-Ho;Maeng, Seung-Jin;Ok, Chi-Youl;Song, Ki-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1334-1343
    • /
    • 2008
  • Growing needs for efficient management of water resources urge the joint operation of dams and integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to constitute a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. One of the currently available models is being studied to be applied with a least effort in order to support the ongoing project of KWATER (Korea Water Resources Corporation), "Establishment of integrated operation scheme for the dams in Han River Basin". On this study, following works have been carried out : division of Han River Basin into 24 sub-basins, use of rainfall data of 151 stations to make spatial distribution of rainfall, selection of control points such as Soyanggang Dam, Chungju Dam, Chungju Release Control Dam, Heongseong Dam, Hwachun Dam, Chuncheon Dam, Uiam Dam, Cheongpyung Dam and Paldang Dam, selection of SSARR (Streamflow Synthesis and Reservoir Regulation) model as a hydrologic model, preparation of input data of SSARR model, sensitivity analysis of parameter using hydrologic data of 2002. The sensitivity analysis showed that soil moisture index versus runoff percent (SMI-ROP), baseflow infiltration index versus baseflow percent (BII-BFP) and surface-subsurface separation (S-SS) parameters are higher sensitive parameters to the simulation result.

A study on applicability of volumetric water content to predict shallow failure (표층붕괴 예측을 위한 체적함수비 적용성 연구)

  • Suk, Jae-Wook;Song, Hyo-Sung;Kang, Hyo-Sub;Kim, Ho-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.737-746
    • /
    • 2019
  • Most landslides in the country are shallow failures triggered by intense rainfall. Many researchers have revealed the possibility of predicting shallow failure through the volumetric water content (VWC). This study examined how to determine shallow failure using the gradient characteristics of the volumetric water content. For this, flume experiments were conducted using weathered granite soil. To confirm the saturation state of the surface layer under a rainfall intensity of 30 and 50mm/hr, VWC sensors were installed at depths of 10 and 20 cm on the upper, middle and lower slope. The test results showed that a shallow failure determination using VWC could be applied limitedly according to the slope degree. In addition, the effective cumulative rainfall due to the rainfall infiltration velocity is considered the main factor for the failure time. The failure prediction using the gradient of the VWC depends on the installation location and depth of the sensor. According to the experimental data, the measured value at 20 cm below the slope was most effective. Therefore, an analysis method of VWC and the method of selecting the installation location confirmed through this study can provide important data for presenting the measurement criteria using VWC in the future.