• Title/Summary/Keyword: Rainfall duration

Search Result 553, Processing Time 0.026 seconds

Ground Water Resources of Kum-Ho River Basin (금호강유역 지하수자원)

  • 한정상
    • Journal of the Korean Professional Engineers Association
    • /
    • v.10 no.2
    • /
    • pp.13-26
    • /
    • 1977
  • The Kum-Ho river basin is one of the densely populated area having more than 35% of the total population and it was also well irrigated since ealier days in the Nackdong River Basin Most of the easily developed source of surface water are fully utilized, and at this moment the basin is at the stage that no more surface water can be made available under the present rapid development of economic condition. Since surface water supplies from the basin have become more difficult to obtain, the ground water resources must be thoroughly investigated and utilized greatly hereafter. In economic ground of the basin what part could ground water play\ulcorner In what quantities and, for what uses could it be put\ulcorner The answer to these questions can be relatively simple; the ground water resources in the basin can be put at almost any desired use and almost anywhere in the basin. The area of the basin is at about 2088km$^2$ in the middle part of Nackdong River Basin and it is located along the Seoul-Pusan Express Highway. The mean annual rainfall is about 974.7m/m, most of which falls from June to September during the monsoon. Accumulated wet period is appeared approximately after every 8 year's accumulated dry-period with the duration of 5 years. The water bearing formations in the basin include unconsolidated alluvial deposits in Age of Quatenary, saprolite derived from weathered crystalline rocks, Kyongsang sedimentary formations of the period from late Jurassic to Cretaceouse, and igneouse rocks ranging of the Age from Mesozoic to Cenozoic. The most productive ground water reservoir in the basin is calcareouse shale and sandstones of Kyongsan system, which occupies about 66% of the total area.

  • PDF

Effects of Environmental Characteristics on the Production of Shellfish in Deukryang Bay, Korea (득량만의 조개류 생산량과 환경요인 관계 분석)

  • Cho, Eun-Seob;Lim, Weol-Ae;Hwang, Jae-Dong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1243-1263
    • /
    • 2011
  • This study was carried out to determine marine environments and phytoplankton community in Deukryang Bay during the period of summer in 1987-2010. Water temperature, salinity, pH and dissolved oxygen were shown in much yearly fluctuations. In August, water temperatures in surface and on bottom were the highest, compared with average surface (24.54$^{\circ}C$) and bottom (22.90$^{\circ}C$) water temperature for 18 years in Deukryang Bay. The main reason is assumed to longer duration of sunshine during the period of August. Although the amount of the rainfall in August was the highest, significant impact of marine environment did not show. Most of dissolved inorganic nitrogen and phosphate in Deukryang were lower concentration during summer and N:P ratio also showed below 18 in Redfield. In particular, extreme increasing of N:P ratio in August was occurred by intensive precipitation. Distribution of phytoplankton community was a consistent occurrence for 18 years. The genus of Chaetoceros, Cosinodisucs and Skeletonema were regarded as the represent diatom, whereas the highest occurrence of genus among dinofagellates was Ceratium. It is thought that the relationship between phytoplankton and nutrient has a strong positive signal, although nutrients persist a little concentration and much fluctuations in marine environments were observed. High availability in phytoplankton is contributed to consistently provide the food organism of shellfish. Consequently, recent decreasing production of shellfish and seed are probably associated with higher temperature during the period of summer. However, higher temperature is also occurred ago and after 2000. On the basis of geography, Deukryang Bay had a small mouth and long channel, which is attributed to decreasing genetic diversity. It is assumed that higher temperature and lower genetic diversity have a extreme impact of larvae and shellfish for reproduction in Deukryang. It is necessary to persistently monitor based on water quality and phytoplankton community.

Relationship Derivation for Rainfall Intensity - Duration - Frequency in Small Basin (소유역의 강우강도-지속기간-재현기간 관계식 유도)

  • Seo, Ju-Seok;Jang, Young-Sang;Jung, Hae-Geum;Yun, Sung-Jun;Kim, Min-Jung;Lee, Jong-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.91-94
    • /
    • 2007
  • 본 연구는 소유역의 강수계측망별 빈도해석에 의한 확률강우량 예측으로 최적 설계홍수량을 추적하고자 한다 빈도해석은 대전유역내 지방기상청의 낮은 계측망 멸도와 13개 소구역으로 분할된 지자체의 높은 계측망 멸도에서 측정된 강우량 자료를 대상으로 하였다 해석에는 낮은 밀도의 한 지점에서 $1969{\sim}2005$년까지 36년간 자료와 높은 밀도의 13 개 지점에서 $2002{\sim}2006$년까지 6년간 자료를 연초과치 계열로 확장하여 각각 2개군으로 구성하였다 강우자료 분석결과 낮은 밀도의 지속기간 1시간에서 79.1mm, 장시간에서 327.0mm, 높은 밀도의 지속기간 1시간에서 85.0mm, 24시간에서 245.0mm로 나타났다. 본 연구에서는 Gumbel 분포와 2변수 Gamma 분포 및 일반극치분포, $2{\cdot}3$ 변수 대수정규분포, 2변수 Weibull 분포에 ${\chi}^2$검정, K-S 검정으로 적합도를 검정하여 Gumbel 분포가 가장 적합한 것으로 나타났다 유도된 강우강도-지속기간-재현기간 관계식은 소유역내 확률강우강도 예측과 설계홍수량 산정에 유용하게 사용될 수 있을 것이다.

  • PDF

Evaluation of Drought Risk in Gyeongsang-do Using EDI (EDI를 활용한 경상도 지역의 가뭄위험도 평가)

  • Park, Jong Yong;Yoo, Ji Young;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.243-252
    • /
    • 2011
  • The change of rainfall pattern due to recent climate change increases the occurrence probability of drought in Korea. Unlike other natural disasters, a drought has long duration, extensive area subject to damage, and greater socioeconomic damage than other disasters. In order to evaluate drought severity, meteorological drought indices are mainly used in practice. This study presents a more realistic method to evaluate drought severity considering drought climate factors as well as socioeconomic factors which are vulnerable to disaster. To perform a spatial evaluation of drought risk in Gyeongsang-do, drought risk was defined and analyzed through the hazard index and the vulnerability index. The drought hazard index was spatially assessed using the drought index and GIS. The drought vulnerability index was also spatially assessed using the 5 socioeconomic factors. As a result, the drought risks were compared and used for evaluating regional drought risk considering regional characteristics of Gyeongsang-do.

Modeling Study for Effects of Hydrothermal Clay Vein on Slope Stability (열수변질 점토맥이 사면 안정성에 미치는 영향에 관한 모델링 연구)

  • Jo, Hwan-Ju;Jo, Ho-Young;Jeong, Kyung-Mun
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.185-196
    • /
    • 2010
  • Clay veins that occurred in a slope by hydrothermal alteration, can significantly affect its slope stability. The effect of clay veins on the slope stability was investigated by numerical modeling study. Various parameters such as cohesion, internal friction angle, orientation, groundwater level, rainfall intensity and duration, have been modelled. As shear strength increased, factor of safety increased. As groundwater level developed, factor of safety decreased. For the case of slip surface developed on interface, factor of safety was lower than that for case of slip surface developed on either weathered soil or clay vein. The effect of various soil types of the slope stability was also investigated by simulating seepage through the slopes with various soils. The groundwater level significantly increased on the slopes with silty and generic soils. For the slope with sandy soil, almost no change in groundwater level was observed due to rapid drainage.

Application of Bayesian Approach to Parameter Estimation of TANK Model: Comparison of MCMC and GLUE Methods (TANK 모형의 매개변수 추정을 위한 베이지안 접근법의 적용: MCMC 및 GLUE 방법의 비교)

  • Kim, Ryoungeun;Won, Jeongeun;Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.300-313
    • /
    • 2020
  • The Bayesian approach can be used to estimate hydrologic model parameters from the prior expert knowledge about the parameter values and the observed data. The purpose of this study was to compare the performance of the two Bayesian methods, the Metropolis-Hastings (MH) algorithm and the Generalized Likelihood Uncertainty Estimation (GLUE) method. These two methods were applied to the TANK model, a hydrological model comprising 13 parameters, to examine the uncertainty of the parameters of the model. The TANK model comprises a combination of multiple reservoir-type virtual vessels with orifice-type outlets and implements a common major hydrological process using the runoff calculations that convert the rainfall to the flow. As a result of the application to the Nam River A watershed, the two Bayesian methods yielded similar flow simulation results even though the parameter estimates obtained by the two methods were of somewhat different values. Both methods ensure the model's prediction accuracy even when the observed flow data available for parameter estimation is limited. However, the prediction accuracy of the model using the MH algorithm yielded slightly better results than that of the GLUE method. The flow duration curve calculated using the limited observed flow data showed that the marginal reliability is secured from the perspective of practical application.

Prolonged Turbidity of the Lower Nakdong River in 2003

  • Kim, Dong-Kyun;Kim, Hyun-Woo;Kim, Gu-Yeon;Kim, Young-Sang;Kim, Myoung-Chul;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.44-53
    • /
    • 2005
  • The Nakdong River, which lies in a monsoon climate zone with warm rainy summers and cold dry winters, is a typical ecosystem showing the attributes of a regulated river. In 2003, the total annual rainfall (1,805 mm) was higher than the average of the past nine years from 1994 to 2002 (1,250 mm). In September a powerful typhoon, Maemi, caused a big impact on the limnology of the river for over two months. Among the limnological variables, turbidity in 2003 (37.4 ${\pm}$ 94.1 NTU, n = 54) was higher than the annual average for ten years (18.5 ${\pm}$ 2.3 NTU, n = 486) in the lower part of the river (Mulgum: RK 28). Furthermore, physical disturbance (e.g. stream bank erosion within channel) in the upstream of the Imha Dam (RK ca. 350; river distance in kilometer from the estuary barrage) in the upper part of the river was a source of high turbidity, and impacted on the limnological dynamics along a 350 km section of the middle to lower part of the river. After the typhoon, high turbidity persisted more than two months in the late autumn from September to November in 2003. Flow regulation and the extended duration of turbid water are superimposed on the template of existing main channel hydroecology, which may cause spatial changes in the population dynamics of plankton in the river.

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

Evaluation of Major Storm Events Both Measured by Chukwooki and Recorded in Annals of Chosun Dynasty: 2. Quantitative Approach (조선왕조실록 및 측우기 기록에 나타난 주요호우사상의 평가: 2. 정량적 평가)

  • Kim, Dae-Ha;Yoo, Chul-Sang;Kim, Hyeon-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.545-554
    • /
    • 2007
  • This study characterized the storm events recorded in the Annals of Chosun Dynasty and evaluated them using a simple rectangular pulses Poisson process model. Storm events without in detail explanation like Keun-Bi (big rain) were found to have rather short return periods compared to the storm events with lengthy explanation about damages like Keun-Mul (high water), Hong-Soo (flood), and Pok-Woo (torrential rain). Not all storm events recorded were the size of annual maxima, so their return periods were found not to be higher than a certain level. Another noticeable fact is that these storm events recorded seem more sensitive to the storm duration rather than the storm intensity. That is, most storms recorded seem to be focused on long durations rather than high intensities. Those storm events with long durations must have caused serious flood damages, which maybe the critical reason why they were recorded.

Groundwater Resources of Gum-Ho River Basin (금호강유역(琴湖江流域) 지하수대(地下水帶)에 관한 연구(硏究))

  • Han, Jeong Sang
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.99-108
    • /
    • 1978
  • The Gum-Ho river basin is one of the densely populated area having more than 35% of the total population and it was also well irrigated since earlier days in the Nackdong river basin. Most of the easily developed source of surface water are fully utilized, and at this moment the basin is at the stage that no more :surface water can be made available under the present rapid development of economic condition. Since surface water supplies from the basin have become more difficult to obtain, the ground water resources must be thoroughly investigated and utilized greatly hereafter. In economic ground of the basin what part could ground water play? In what quantities and, for what uses could it be put? The answer to these questions can be relatively simple;the ground water resources in the basin can be put at almost any desired use and almost anywhere in the basin The area of the basin is at about $2088km^2$ in the middle part of Nackdong river basin and it is located along the Seoul-Pusan express highway. The mean annual rainfall is about 974.7mm, most of which falls from June to September during the monsoon. Accumulated is appeared approximately after every 8 year's accumlated dry period with the duration of 5 years. The water bearing formation in the basin include unconsolidated alluvial deposits in Age of Quaternary, saprolite derived from weathered crystalline rocks, Gyongsang sedimentary formations of the period from late Jurassic to Cretaceouse, and igneouse rocks ranging of the Age from Mesozoic to Cenozoic. The most productive ground water reservoir in the basin is calcareous shale and sandstones of Gyongsang system, which occupies about 66% of the total area. The results of aquifer test on Gyongsang sedimentary formation show that average pumping capacity of a well drilled into the formation with drilling diameter and average depth of $8{\frac{1}{2}}$ inch and 136m is $738m^3/day$ and also average specific capacity of those well is estimated $77.8m^3/D/M$. Total amount of the ground water reserved in the basin is approximately estimated at 37 billion metric tons, being equivalent 18 years total precipitations, among which 7 billion metric tons of portable ground water can be easily utilized in depth of 200 meters.

  • PDF