• 제목/요약/키워드: Rainfall Factor

검색결과 576건 처리시간 0.015초

강우형태변화에 의한 소수력발전소 수문학적 성능의 변화 (Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change)

  • 박완순;이철형
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

강우시 철도 성토사면의 안정성 평가에 관한 연구 (A Study on the Stability Evaluation of Railway Embankment under Rainfall)

  • 신민호;박영곤;김현기
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.203-212
    • /
    • 2000
  • In order to evaluate the stability of railway embankment under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor The maximum hourly rainfall during 24 hours before failure caused the collapse of railway embankment and could be used estimate the stability of railway embankment. From the result of application to a collapse example, the evaluaton method by critical rainfall curve is satisfactory.

  • PDF

강우조건을 고려한 불포화사면의 안정성 평가 (Evaluation of Rainfall Conditions on Slope Stability in Unsaturated Weathered Soils)

  • 권홍기;박성완
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.599-606
    • /
    • 2010
  • It has been reported that many slope failures in unsaturated soils are mainly caused by downward infiltration due to rainfall. The rainfall characteristics could be an important factor, and more predictable slope failures can be achieved by considering more reasonable rainfall conditions. So, a need exists that these trends of infiltration in weathered soils, which is commonly found in Korea, are assessed by considering rainfall conditions based on phenomenological approach. In this paper, numerical analyses of unsaturated soil slope under rainfall conditions are presented based on the soil-water characteristic curve in the laboratory and huff method. Then the performance of unsaturated weathered soil slopes was evaluated under various conditions after applying the effect of overburden pressure on SWCCs and fines contents. The results demonstrated that the rainfall conditions using Huff method can be very effective and the proper application on analysis is very important to enhance the prediction on unsaturated slope stability.

  • PDF

진부지역 토석류발생 사면에 대한 침투 및 사면안정 연계해석 (Seepage and Slope Stability Analysis on the Site of Debris-flow at Jinbu Area)

  • 전경재;윤찬영;서흥석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.369-376
    • /
    • 2009
  • Field investigation was performed right after the occurrence of debris flow at Jinbu area. Geomorphic and geotechnical characteristics were investigated and rain fall data were collected. Based on these data, seepage and slope stability analysis was performed to verify the behavior of ground water and factor of safety of the slope according to the rainfall intensity and time. As a results, the minimum value of factor of safety achieved in long time after the moment of maximum precipitation rate. And it is confirmed that the factor of safety is susceptible to ground water level rather than rainfall intensity.

  • PDF

NRCS 침투모형에 의한 경사진 사면의 지하수위 평가 (Groundwater Level Estimation on a Slope by NRCS model)

  • 문영일;신동준;오태석;이수곤
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.553-556
    • /
    • 2008
  • Slope-related disasters have been occurred in July and September due to the typhoon and concentrated precipitation. It is shown that rainfall is the most important factor which leads to slope-related disasters in Korea. In this paper, slope analysis was applied by rainfall intensity as a rain factor and was assumed that all rainfall would be infiltrated on the slope. Also, groundwater level on a slope was estimated by using SEEP/W program according to infiltration. Where, amount of Infiltration can be calculated by using NRCS model. Finally, safety factor on a slope was invested by groundwater level.

  • PDF

우리나라의 최대하강수량 빈도계수 산정에 관한 연구 (A Study on the Estimation of Probable Maximum Precipitation Frequency Factor in Korea)

  • 노재식;이원환;이길춘
    • 물과 미래
    • /
    • 제19권3호
    • /
    • pp.249-258
    • /
    • 1986
  • 본 연구는 수공구조물의 계획설계와 물관리 계획시 계획강우량의 결정기준이 되는 우리나라 전역의 최대하강수량 추정을 위한 최대하강수량 빈도계수 산정에 관한 내용이다. PMP 빈도계수 산정에 있어서는 연속기록년 20년의 자기우량기록지 보유지점을 대상으로 하였으며, 지속기간별(10분, 1,2,4,6,12,24시간) 연최대치 강우자료집단을 이용하여 연최대평균강우량에 따른 PMP 빈도계수를 결정할 수 있는 상관도를 작성하였다. 최대하강수량은 최대평균강우량과 빈도계수 및 지속기간 상관도상에서 얻어진 PMP 빈도계수와 통계치를 사용하여 통계학적 방법으로 산정하였으며, 포락선에 의해서 지점 최대하강수량과 지속기간 관계식을 유도하여 산정하였다. 산정된 지점 최대하강수량으로부터 전국에 대한 24시간 최대하강수량 분포도와 PMP·DAD 곡선을 작성하였다. ^ The purpose of this study is to estimate the PMP frequency factor for evaluation of the Probable Maximum Precipitation (PMP) in Korea. The value of PMP is the criterion of the determination of design rainfall in Planning and designing hydraulic structures, and water resources management. To obtain the object, 12 key stations were selected in which have the automatic rain0recording paper of 20 years, and the annual maximum rainfall values were calculated for each 7 durations(10 min., 1,2,4,6,12,24 hr.). The statistics(mean, standard deviation)were estimated, and diagram which shows the relationship between mean annual maximum rainfall($$) and frequency factor for each durations were drawn. PMP was estimated by statistical method using the PMP frequency factor obtained from the diagram and statistics($$, Sn). The PMP-Duration Equation was derived from the envelope curve in order to obtain the PMP for an arbitrary duration. The isohyetal map of 24 hours PMP and PMP. DAD curve for the whole of Korea were drawn in accordance with the point PMP values.

  • PDF

우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구 (Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season)

  • 송평현;백용;유병옥;황영철
    • 한국지반공학회논문집
    • /
    • 제30권10호
    • /
    • pp.45-54
    • /
    • 2014
  • 비탈면 붕괴를 최소화 하기 위하여 조사, 설계, 해석, 대책방안 등의 연구가 많이 수행되고 있다. 그러나, 최근 태풍 및 집중호우로 인하여 비탈면 및 자연 사면의 산사태 발생빈도는 줄지 않고 있다. 단순한 설계 기준의 강화만으로는 적절한 대책을 마련하기 어려운 실정이다. 따라서, 지반과 강우를 고려한 최적의 조건에서 설계 및 안정해석을 실시하여야 한다. 본 연구는 비탈면 해석시 강우 및 해석조건에 대하여 각 변수의 영향을 살펴보고자 안전율의 변화를 다각도로 검토한 것이다. 연구방법으로는 비탈면 안정에 가장 민감하게 반응한다고 판단되는 강우조건과 지반조건을 선정하였고, 각각의 조건변수를 변화시켜가면서 수치해석적 검토를 수행하였다. 강우특성으로는 국내의 확률강우특성을 기반으로 해석을 수행하였으며 지반조건으로는 불포화토를 대상으로 검토를 실시하였다. 연구결과, 지역별 강우특성과 불포화토의 매개변수 적용이 비탈면 안전율 변화에 민감하게 반응하는 것으로 나타났다. 따라서, 설계시 입력변수에 대한 충분한 검토가 선행되어야 할 것이다.

강우사상의 영향을 고려한 불포화 풍화사면의 안정성 (Effect of Rainfall-Patterns on Slope Stability in Unsaturated Weathered Soils)

  • 김병수;박성완
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1027-1035
    • /
    • 2013
  • 사면안정 해석 시, 사면파괴의 주원인인 강우사상의 현실적 접목을 위하여 본 연구에서는 다음 두 가지 방법을 채택하였다. 하나는 시간에 따른 강우량 변화의 영향을 무시한 기존의 설계강우 방식인 I.D.F(Intensity-Duration-Frequency)곡선을 이용하는 방법이며, 다른 하나는 시간의 영향을 고려하여 강우사상을 표현한 Huff 방법이다. 먼저 I.D.F 방법의 강우사상을 적용하여 선행강우효과를 나타내는 초기흡수력의 변화에 따른 사면의 안전율의 변화를 알아보았다. 또한, 두 강우사상의 방식을 적용하여 강우사상이 사면의 안전율 변화에 미치는 영향을 규명하고자 하였다. 그 결과, Huff 방법의 강우사상이 I.D.F 방법보다 더 현실적으로 사면의 안전성 평가가 이루어 질 수 있음을 확인할 수 있었다.

Effect of Extreme Rainfall on Cut Slope Stability: Case Study in Yen Bai City, Viet Nam

  • Tran, The Viet;Trinh, Minh Thu;Lee, Giha;Oh, Sewook;Nguyen, Thi Hai Van
    • 한국지반환경공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.23-32
    • /
    • 2015
  • This paper addresses the effects of extreme rainfall on the stability of cut slopes in Yen Bai city, Northern Viet Nam. In this area, natural slopes are excavated to create places for infrastructures and buildings. Cut slopes are usually made without proper site investigations; the design is mostly based on experience. In recent years, many slope failures have occurred along these cuts especially in rainy seasons, resulting in properties damaged and loss of lives. To explain the reason that slope failure often happens during rainy seasons, this research analyzed the influence of extreme rainfalls, initial ground conditions, and soil permeability on the changes of pore water pressure within the typical slope, thereafter determining the impact of these changes on the slope stability factor of safety. The extreme rainfalls were selected based on all of the rainfalls triggering landslide events that have occurred over the period from 1960 to 2009. The factor of safety (FS) was calculated using Bishop's simplified method. The results show that when the maximum infiltration capacity of the slope top soil is less than the rainfall intensity, slope failures may occur 14 hours after the rain starts. And when this happens, the rainfall duration is the deciding factor that affects the slope FS values. In short, cut slopes in Yen Bai may be stable in normal conditions after the excavation, but under the influence of tropical rain storms, their stability is always questionable.

시계열분석과 요인분석에 의한 결정질 암반의 지하수 유동 평가 (Evaluation of Goundwater Flow Pattern at the Site of Crystalline Rock using Time Series and Factor Analyses)

  • 이정환;정해룡;윤시태;김지연;조성일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.12-22
    • /
    • 2014
  • This study evaluated the pattern of groundwater fluctuation in cyrstalline rock using time series and factor analyses. From the results, groundwater level for the 18 wells was classified into 4 types reflecting the hydrogeological properties and rainfall event. Type 1 (DB1-5, DB1-6, DB2-2, KB-10, KB-13) was significantly influenced by groundwater flow through water-conducting features, whereas type 2 (DB1-3, DB1-7, KB-1~KB-3, KB-7, KB-11, KB-14, KB-15) was affected by minor fracture network as well as rainfall event. Type 3 (DB1-1, DB1-2) was mainly influenced by surface infiltration of rainfall event. Type 4 (DB1-8, KB-9) was reflected by the irregular variation of groundwater level caused by anisotropy and heterogeneity of crystalline rock.