• Title/Summary/Keyword: Rainfall Condition

Search Result 595, Processing Time 0.024 seconds

Method for Analysis on Optimization of Averaging Interval of Rainfall Rate Measured by Tipping-Bucket Rain Gauges

  • Nam, Kyung-Yeub;Chang, Ki-Ho;Kim, Kyung-Eak;Oh, Sung-Nam;Choi, Young-Jean;Kim, Kyung-Sik;Lee, Dong-In;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Rainfall data from three different types of rain gauge system have been collected for the summertime rain event at Mokpo in the Korean peninsula. The rain gauge system considered in this paper is composed of three tipping-bucket rain gauges with 0.1, 0.2, and 0.5 mm measuring resolutions, the Optical Rain Gauge (ORG), and the PARSIVEL (PARticle SIze and VELocity). The PARSIVEL rainfall rate has been considered as the reference for comparison since it gave good resolution and performance on this event. Comparison with the PARSIVEL rainfall rate gives the results that the error and temporal variation of rainfall rate are simultaneously reduced with increasing the averaging interval of rainfall rate or decreasing the size of tipping bucket. This suggests that the estimated rainfall rate must be optimized, differently for the type of tipping-bucket rain gages, by minimizing the averaging interval of rainfall rate under the condition satisfying the given performance of rainfall rate.

Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope - (인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 -)

  • Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Seo, Jiyeon;Lee, Jaewoon;Lim, KyoungJae;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.

Affecting Discharge of Flood Water in Paddy Field from Selecting Rainfall with Fixed and Unfixed Duration (고정, 임의시간 강우량 선택에 따른 농경지 배수 영향 분석)

  • Hwang, Dong Joo;Kim, Byoung Gyu;Shim, Jwa Keun
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.64-76
    • /
    • 2012
  • Recently, it has been increased disaster of crops and agricultural facilities with climate change such as regional storm, typhoon. However agricultural facilities have unsafe design criteria of improving drainage corresponding to this change. This study has analyzed the impact that inundation area and magnitude of drainage-facility is decided based on fixed- and unfixed-duration precipitation by applying revised design criteria of drainage for climate change. The result was shown that 1-day and 2-days rainfall for 20-years return period has increased about 11.4%, 4.4% respectively by changing fixed- to unfixed duration. And the increase rate of design flood was 15.0%. The result was also shown that Inundation area was enlarged by 6.6% as well as increased inundation duration under same basic condition in designed rainfall between fixed- and unfixed-duration. According to the analysis, it is necessary for pump capacity in unfixed-duration to be increased by 70% for same effect with fixed-duration. Therefore, when computing method of probability precipitation is changed from fixed one to unfixed-duration by applying revised design criteria, there seems to be improving effect in drainage design. Because 1440-minutes rainfall for 20-years return period with unfixed-duration is more effective than 1-day rainfall for 30-years return period with fixed-duration. By applying unfixed-duration rainfall, capacity of drainage facilities need to be expanded to achieve the same effects (Inundation depth & duration) with fixed-duration rainfall. Further study is required for considering each condition of climate, topography and drainage by applying revised design criteria.

  • PDF

Estimation of Disaster Prevention Target Rainfall according to Urban Disaster Prevention Performance (도시방재성능에 따른 방재성능목표 강우량 산정 연구)

  • Jeong, Min-Su;Oak, Young-Suk;Lee, Young-Kune;Lee, Young-Sub;Park, Mi-Ri;Lee, Chul-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.101-110
    • /
    • 2017
  • The National Emergency Management Agency (NEMA) presented the disaster prevention performance target rainfall (DPPTR) for disaster prevention. The estimation criteria for DPPTR is a 10 year cycle. On the other hand, the target rainfall recalculated every 10 years is difficult to reflect the current change in rainfall on climate change. In this study, the probability of precipitation using the recent rainfall data was prepared and the weights according to socio-economic criteria reflecting the urban characteristics and adjusted probability rainfall criteria were applied to the results. The difference between the existing target rainfall and recalculated result was compared. The input data for the estimated probability rainfall was selected from 6 points located in the rainfall observing station of Chungcheongnam-do, Daejeon region. As a result of the estimation, in the case of upward probability precipitation weight, some similar areas were observed. On the other hand, there were a few cases of upward or downward changes within 10 mm. Considering the rainfall variability and uncertainty due to climate change, the existing target rainfall does not present the condition properly. Therefore, hydrological designers need to calculate the target rainfall, reflecting the present condition.

Instability Analysis of Unsaturated Soil Slope Considering Wet Condition (습윤상태를 고려한 불포화 토사사면의 불안정성 해석)

  • Kim, Yong Min;Kim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1489-1498
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate the effect of antecedent rainfall which is assumed by initial conditions varying degree of saturation (36, 51, 77%) in finite element analysis. The distributions of matric suction and deformation on slope surface obtained from numerical simulation show the instability of antecedent rainfall-induced unsaturated soil slope. Moreover, the numerical analysis using Drucker-Prager model can be checked if a soil slope has reached failure (trial failure criterion $f^{tr}$ >0, plastic behavior) or not (trial failure criterion $f^{tr}$ < 0, elastic behavior). It is found that displacement of slope surface layer increases and the matric suction on soil slope decreases with an increase of initial degree of saturation by antecedent rainfall. Especially, the matric suction of the soil slope in dry condition (S=36%) rapidly decreases rather than that in wet condition (S=51%) at the same rainfall duration. The results of the trial failure criterion ($f^{tr}$ > 0) show slope instability in the toe region and surface of the slopes.

An Experimental Study of the Diffusion Flame Characteristics for the Gas Fueled Torch System

  • Choi, Hyun-Kyung;Choi, Seong-Man
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.50-55
    • /
    • 2006
  • Currently, a gas fueled diffusion flame is used for the relay torch system. It could be burned cleanly but should be stable at severe weather condition such as rain of up to 55 mm/h, winds of up to 70 km/h and also produce a highly bright yellow visible flame. This paper presents torch diffusion flame characteristics on the various wind speeds and rainfall conditions. From the results, flame lengths are controlled by the momentum flux ratio of fuel and ambient air flow and flame stability is much influenced by the mixing characteristics with air flow. Flame is fluctuated above than 200 mm/h rainfall and blow out is occurred about 300 mm/h rainfall condition.

A Study on the Infiltration Characteristics of Soil Cut-Slope (토사절토사면의 침투특성에 관한 연구)

  • Lee, Jeong-Yeob;Koo, Ho-Bon;Kim, Seung-Hyun;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.735-738
    • /
    • 2005
  • The purpose of this study is the infiltration characteristics of soil cut-slope by rainfall. Stability analysis of soil cut-slopes has been conducted by limit equilibrium method on Seep/w and finite element method on Slope/w. Result is same as following. First. the hour when seepage line and groundwater in contact is proportionate from rainfall rate condition and upper natural slope gradient condition which is identical. Second, when seepage line and groundwater is contact, seepage line moves gradually at soil cut-slope surface. Finally, seepage line is formed similarly with soil cut-slope gradient. Third, when rainfall is ended, from the recording upper natural slope where the hour will pass it is stabilized

  • PDF

An Analysis of the variability of rainfall quantile estimates (확률 강우량의 변동성 분석)

  • Jung, Sung In;Yoo, Chul Sang;Yoon, Yong Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.256-261
    • /
    • 2004
  • Due to the problems of global warming, the frequency of meteorological extremes such as droughts, floods and the annual rainfall amount are suddenly increasing. Even though the increase of greenhouse gases, for example, is thought to be the main factor for global warming, its impact on global climate has not yet been revealed clearly in rather quantitative manners. Therefore, tile objective of this study is to inquire the change of precipitation condition due to climate change by global warming. In brief, this study want to see its assumption if rainfall quantile estimates are really changing. In order to analyze the temporal change, the rainfall quantile estimates at the Seoul rain gauge stations are estimated for the 21-year data period being moved from 1908 to 2002 with 1-year lag. The main objective of this study is to analyze the variability of rainfall quantile estimates using four methods. Next, The changes in confidence interval of rainfall quantile are evaluated by increasing the data period. It has been found that confidence interval of rainfall quantile estimates is reduced as the data period increases. When the hydraulic structures are to be designed, it is important to select the data size and to re-estimate the flood prevention capacity in existing river systems.

  • PDF

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

A Study on Development of Computer model for Evaluating the Effective Rainfall on Upland Soil (밭 토양에서의 유효강우량 산정을 위한 전산모델 개발에 관한 연구)

  • 고덕구;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.63-72
    • /
    • 1982
  • To maintain an optimum condition for the plant growth on upland soil, the irrigation planning after the natural rainfall should be given enormous considerations on the rainfall effectiveness. This study has been intended to develop the computer model for estimating the effec- tiveness of the rainfall. The computer model should also estimated the infiltration due to the rainfall and the soil moisture deficiency at the root zone of the plant. For this purpose, the experiments of infiltration using rainfall simulator and the observations of the change of soil moisture content before and after rainfall were carried out. Needed input data for the developed model include final infiltration capacity and field capacity of the soil, porosity of the top soil, root depth of the plant, rainfall intensity and duration, and the Horton's decay coefficient. Among the needed input data for the developed model, final infiltration capacity and Horton's decay coefficient were determined by the experiments of infiltration. And from the result of the experiments, it is found that there is a great correlation between initial infiltration capacity and initial moisture content. And it is also found that the infiltration due to rainfall can be estimated with the Horton's equation. The developed model was tested by the experimental data with two rainfall intensities. Tests were conducted on the different root depths at each rainfall. Observed and estimated effective rainfalls were found to have great correlation. The result of the experiments showed that the effectiveness of the rainfall were 100%, so the comparisons were conducted by the comsumption rates of infiltration at each depth. The developed model can be also used for estimating the deficiency of rainfall, if the rainfall is not sufficient to the needed soil moisture. But, test was not carried out.

  • PDF