• Title/Summary/Keyword: Rain intensity

Search Result 205, Processing Time 0.036 seconds

Bit Error Bounds for Trellis Coded Asymmetric 8PSK in Rain Fading Channel (강우 페이딩 채널에서 비대칭 8PSK 트랠리스 부호화방식의 비트에러 상한 유도)

  • 황성현;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.797-808
    • /
    • 2000
  • This paper presents the bit error rate(BER) upper bounds for trellis coded asymmetric 8PSK(TC-A8PSK) system using the Ka-band satellite in the rain fading environment. The probability density function(PDF) for the rain fading random variable can be theoretically derived by assuming that the rain attenuation can be approximated to a long-normal distribution and the rain fading parameters are calculated by using the rain precipitation data from the Crane global model. Furthermore, we analyze the BER upper bounds of TC-A8PSK system according to the number of states in the trellis diagram and the availability of channel state information(CSI). In the past, Divsalar and Simon[9] has analyzed the BER upper bounds of 2-state TCM system in Rician fading channels however this paper is the first to analyze the BER upper bounds of TCM system in the rain fading channels. Finally, we summarize the dominant six factors which are closely related to the BER upper bounds of TC-A8PSK satellite system in the rain fading channel as follows: 1) frequency band, 2) rain intensity, 3) elevation angle, 4) signal to noise ratio, 5) asymmetric angle, and 6) availability of CSI.

  • PDF

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

A Fundamental Study on Slope Stability Due to Filtering Condition of Embankment Material During Rain (성토재료의 필터링 조건이 사면 안정에 미치는 기초연구)

  • Kim, Sang-Hwan;Kim, Hak-Moon;Shin, Jong-Ho;Ko, Dong-Pil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.419-426
    • /
    • 2008
  • Recently, localized heavy rain due to "EL-LIO" was a kind of reason by risk of slope stability. In this paper, the behaviour of slope when localized heavy rain was studied. In order to perform this study experimental programs were performed. Experimental programs was checked filtering conditions for slope stability due to localized heavy rain. And then, investigated slope stability and fracture mechanism each other types. In the experimental study, performed changing filtering condition by embankment, through five fixing factors such as rainfall intensity, slope shape, geological condition, compaction energy and water content. According to the results of this study, behaviour of facture slope has made a shallow and narrow waterway. This waterway expanded base stone. In order to, suggested a system for slope stability examination.

  • PDF

A Study on the Underestimation of the Rainfall Data due to Wind (바람에 의한 우량자료의 변동성 연구)

  • Park, Moo-Jong;Kim, Eung-Seok;Kim, Joon-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.237-249
    • /
    • 2003
  • Wind effects on a rain gauge can cause a significant underestimation of rainfall depths and contribute to the inconsistency in rainfall data. To revise the rainfall data requires the study about calculation of deficiency percentages of rain catch. There are few studies which reflect the variation of wind speed. in this study, the raindrop terminal velocity is quantified according to the particle size of rainfall. The model for calculating deficiency percentages of rain catch according to the particle size of rainfall is examined by experimentation. Experimentation shows that deficiency percentages of rain catch have no relationship with rainfall intensity and affected by raindrop diameter. In conclusion, the estimated deficiency percentages of rain catch coincided with the experimental results and can be used as recommended adjustment factors.

Characteristics of Road Runoff depending on the Rainfall Intensity (강우강도에 따른 노면유출수의 유출 특성)

  • Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Lee, Yong-Jae;Kim, Ree-Ho;Kim, Jong-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.494-499
    • /
    • 2004
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Therefore, it is necessary to manage both point and non-point sources contaminations for protecting water environment and improving water quality. This study investigated the characteristics of pollutant release over a wide range of rainfall intensities as a requisite to control road runoff that accounts for the largest portion of non-point source contamination in urban areas. Samples of runoff rainwater collected from real road surfaces were analyzed for physicochemical parameters such as pH, suspended solids, and heavy metals. A experimental model road ($30cm{\times}30cm$) was also used to evaluate wash-off properties of pollutants deposited on the surface as functions of time and rainfall intensity. Analysis of runoff samples on rain events showed that the pollutant wash-off patterns for heavy metal and suspended solids were similar. This implies that the particles in rainwater adsorb heavy metals. Experiments using the model road made of impervious asphalt demonstrate a strong first flush phenomenon. At high rainfall intensity, approximately 80% of total pollutants were released within 15 min. The pollutant wash-off rates rapidly increase from 9 mm/hr to 12 mm/hr of rainfall intensity and decrease over 12 mm/hr of rainfall intensity.

Estimation of the National Burden of Disease and Vulnerable Population Associated with Natural Disasters in Korea: Heavy Precipitation and Typhoon

  • Han, Hyun-Jin;Kim, Jong-Hun;Chung, Soo-Eun;Park, Jae-Hyun;Cheong, Hae-Kwan
    • Journal of Korean Medical Science
    • /
    • v.33 no.49
    • /
    • pp.314.1-314.15
    • /
    • 2018
  • Background: Despite its growing significance, studies on the burden of disease associated with natural disasters from the perspective of public health were few. This study aimed at estimating the national burden of disease associated with typhoons and torrential rains in Korea. Methods: During the period of 2002-2012, 11 typhoons and five torrential rains were selected. Mortality and morbidities were defined as accentual death, injury and injury-related infection, and mental health. Their incidences were estimated from National Health Insurance Service. Case-crossover design was used to define the disaster-related excess mortality and morbidity. Disability-adjusted life years (DALYs) were directly assessed from excess mortality and morbidity. Results: The burden of disease from typhoons increased with the intensity, with 107.7, 30.6, and 36.6 DALYs per 100,000 per event for strong, moderate, and weak typhoons, respectively. Burden of disease from torrential rains were 56.9, 52.8, and 26.4 DALYs per 100,000 per event for strong, moderate, and weak episodes, respectively. Mental disorders contributed more years lived with disability (YLDs) than did injuries in most cases, but the injury-induced YLDs associated with strong typhoon and torrential rain were higher than those of lower-intensity. The elderly was the most vulnerable to most types of disaster and storm intensities, and males younger than 65 years were more vulnerable to a strong torrential rain event. Conclusion: The intensity of torrential rain or typhoon was the strongest determinant of the burden of disease from natural disasters in Korea. Population vulnerable may vary depending on the nature and strength of the disasters.

Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf (인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

Development of Relationship between Air Quality and Rain Acidity (대기질 - 강우산성도 관계식의 개발)

  • 구자공;유동준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.45-51
    • /
    • 1986
  • The simple and precise model for the estimation of rain acidity from the ambient air quality was developed using the theory of wet scrubber and the chemical equilibria of $SO_2, CO_2, and H_2O$ system. From the measured mixing height, and from the developed relationship between NTU (=number of transfer units) and the concentration of $SO_2$(aq) in rain drops, the HTU (= height equivalent to one transfer unit, i.e. mass transfer resistance) was estimated, and validated with the field-measured data. In Seoul, Korea where the effect of $SO_2$ on rainfall acidity is as high as 84% and the average mixing height is 1 km, the average HTU of $SO_2$ system was found to be 191.5m. The important parameters affecting HTU were identified as rainfall intensity and initial ambient concentration of $SO_2$, and their effects on the value of overall volumetric mass transfer coefficient were quantified.

  • PDF

Characterization of the temporal variability of seasonal precipitation using hourly precipitation data (시강우 자료를 이용한 계절별 강수특성 변화분석)

  • Kim, Gwang-Seob;Cho, Hyun-Gon;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.399-399
    • /
    • 2011
  • 최근 한반도와 세계 곳곳에서 기후변화로 야기되는 이상기후에 의한 피해가 늘고 있으며, 그 피해 규모와 빈도 또한 점점 증가하는 추세이다. 이러한 추세 속에서 인적, 물적 피해를 최소화하기 위해 세계 각국이 기후변화에 대한 정확한 예측을 위한 많은 노력과 연구가 진행되고 있다. 지금까지 수행된 연구들은 일반적으로 강수특성의 변화를 파악하기 위해서 연 및 월 최대 강우량, 지속시간별 최대 강우량 등 총량적 개념을 이용한 연구가 대부분이다. 그러나 이는 실제 강수사상의 구조적 변화를 파악하는 데 있어서 한계가 있다. 본 연구에서는 전국 기상관측소 59개의 지점에 대한 1961년-2009년까지의 시계열 강수자료를 이용하여 지점 및 유역별 강수사상의 number of rain even, duration, intensity, quantity 시간분포 구조의 변화를 파악하고자 하였다. 분석결과 number of rain event와 total quantity는 전국적으로 증가 하였으며 total rain hour는 남해안 지역을 제외한 전국에서 증가 하는 것으로 분석 되었다. 결과를 바탕으로 강수변화의 패턴과 추세를 보다 정확하게 파악하고 미래강수 예측에 유용한 자료로 활용될 것으로 사료된다.

  • PDF