• Title/Summary/Keyword: Railway safety

Search Result 2,135, Processing Time 0.026 seconds

Detection Fastener Defect using Semi Supervised Learning and Transfer Learning (준지도 학습과 전이 학습을 이용한 선로 체결 장치 결함 검출)

  • Sangmin Lee;Seokmin Han
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • Recently, according to development of artificial intelligence, a wide range of industry being automatic and optimized. Also we can find out some research of using supervised learning for deteceting defect of railway in domestic rail industry. However, there are structures other than rails on the track, and the fastener is a device that binds the rail to other structures, and periodic inspections are required to prevent safety accidents. In this paper, we present a method of reducing cost for labeling using semi-supervised and transfer model trained on rail fastener data. We use Resnet50 as the backbone network pretrained on ImageNet. At first we randomly take training data from unlabeled data and then labeled that data to train model. After predict unlabeled data by trained model, we adopted a method of adding the data with the highest probability for each class to the training data by a predetermined size. Futhermore, we also conducted some experiments to investigate the influence of the number of initially labeled data. As a result of the experiment, model reaches 92% accuracy which has a performance difference of around 5% compared to supervised learning. This is expected to improve the performance of the classifier by using relatively few labels without additional labeling processes through the proposed method.

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Accident Risk Consequences Analysis for Operating a Hydrogen Refueling Station in Urban Railway Site (도심 내 철도부지 수소충전소 운영을 위한 사고 위험 영향 분석)

  • Jae Yong Lee;Deokkyu Youn;Chul-Ho Lee;Jaeyoung Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • In response to climate change, each country is proposing a goal to reduce greenhouse gases in its energy supply and demand plan, and the use of hydrogen gas is a topic that is always prioritized as an energy resource for implementation. A popular way to use this hydrogen gas is the use of hydrogen fuel cell vehicles, and expansion of hydrogen charging stations is essential for using these hydrogen fuel cell vehicles. However, there are several limitations to the expansion of hydrogen refueling stations, the most representative of which is resident acceptance. Most of the hydrogen charging stations currently built in Korea are located in the outskirts with low population density, so the inconvenience to hydrogen fuel cell vehicle users has not been resolved, and as a result, there has been no progress in the spread of hydrogen fuel cell vehicles. In this paper, we analyzed the consequences of accident damage to determine the risks of constructing a hydrogen charging station on a railroad site frequently used by citizens. The target hydrogen charging station site was a railroad depot in Busan, and there are trains, national highways, and commercial facilities around this site. Assuming the worst-case scenario, we would like to consider the safety of the hydrogen refueling station site by analyzing the area affected by the accident and its consequence.

Evaluation of Peak Ground Acceleration Based on Seismic Design Standards in Sejong City Area Using Gyeongju-Pohang Type Design Seismic Waves (경주·포항형 설계지진파를 활용한 세종시 지역의 내진설계기준 지표면최대가속도 성능평가)

  • Oh, Hyun Ju;Lee, Sung Hyun;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.41-48
    • /
    • 2024
  • In 2017, the Ministry of the Interior and Safety conducted research for the revision of seismic design standards and performed studies on standard design response spectra. As a result, the Common Application Guidelines for Seismic Design Standards were introduced, and these guidelines have been implemented in the national design standards of the Ministry of Land, Infrastructure, and Transport for practical use. However, it should be noted that the research for proposing standard design response spectra during the 2017 revision was conducted before the occurrence of the significant seismic events in South Korea, such as the 2016 Gyeongju Earthquake and the 2017 Pohang Earthquake. To account for these recent major earthquakes, this study adjusted the standard design spectra based on the records of the 2016 Gyeongju Earthquake and the 2017 Pohang Earthquake and conducted ground response analyses accordingly. The results revealed variations in peak ground acceleration (PGA) at the ground surface even within the same ground classification. It was confirmed that this variation can lead to overestimation or underestimation of seismic loads.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.