• Title/Summary/Keyword: Railway power compensator

Search Result 20, Processing Time 0.024 seconds

Power Compensator Control for Improving Unbalanced Power of AC Electric Railway (교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어)

  • Woo, Jehun;Jo, Jongmin;Lee, Tae-Hoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.213-218
    • /
    • 2020
  • In this study, we propose a control algorithm to reduce the unbalanced characteristics of a three-phase system power caused by the unbalanced load of the AC electric railway. Then, we verify its performance through the design of a power compensator and experiments applying it. Like electric railway systems, a Scott transformer is applied, and the load and single-phase back-to-back converters are connected to the M-phase and T-phase outputs. The back-to-back converter monitors the difference in active power between the unbalanced loads in real-time and compensates for the power by using bidirectional characteristics. The active power is performed through PI control in the synchronous coordinate system, and DC link overall voltage and voltage balancing control are controlled jointly by M-phase and T-phase converters to improve the responsiveness of the system. To verify the performance of the proposed power compensation device, an experiment was performed under the condition that M-phase 5 kW and T-phase 1 kW unbalanced load. As a result of the experiment, the unbalance rate of the three-phase current after the operation of the power compensator decreases by 58.66% from 65.04% to 6.38%, and the excellent performance of the power compensator proposed in this study is verified.

BESS Modeling and Application to Voltage Compensation of Electric Railway System (BESS 모델링 및 전기철도 급전계통에의 전압보상 적용)

  • Yoo, Hyeong-Jun;Son, Ho-Ik;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.417-423
    • /
    • 2013
  • The load of electric railroad can generate voltage fluctuation in the electric railway system because of high speed of the electric railroad and frequent movement and stop. This voltage fluctuation of electric railway system can cause not only voltage imbalance but also harmonic in the utility grid. Therefore the electric railroad system is in need of the reactive power compensation, such as static synchronous compensator (STATCOM) and static var compensator (SVC). Especially, the battery energy storage system (BESS) can control the real and reactive power at the same time. In this paper, the electric railway system using BESS has been modeled to show its voltage compensation effect using Matlab/Simulink.

Modeling and Simulation Reactive Power Compensator using Multi-port Network Algorithm in Electrified Railway (다단자망 알고리즘을 이용한 급전시스템의 무효전력 보상 모델링 및 시뮬레이션)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.883-887
    • /
    • 2016
  • The power supply system in Korean electrified railway has adopted AT feeding. If a fault occurs in some substation for any reason, the vicinity substation must feed electric power on the outage substation through catenary. So, the feeding distance grows twice of the normal state at extended feeding condition. If substation's feeding distance is longer than normal condition, the catenary impedance and train to supply electric power from the substation. Therefore, the severe voltage drop can occur and power supply shall be not allowed. This paper presents the model of compensator against voltage drop using multi-port network algorithm. Whole traction power supply system can be analyzed with this model. Computer simulation including this model is performed based on real train schedule and increased schedule in case studies.

A Study on a New Power Flow Method for Analysis of AC Electric Railway System and Improvement of Voltage Drop Using a STATCOM (교류 전기철도 시스템의 해석에 적합한 조류계산 기법 및 STATCOM을 적용한 전압 강하 개선 연구)

  • Baek, Jung-Myoung;Lee, Byung-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.669-676
    • /
    • 2007
  • This paper presents a new power flow method to analyze the AC electric railway system effectively in both cases of traction and regenerative braking of the trains. The algorithm to easily solve the power flow of the AC electric railway system with the trains of regenerative braking from the system without a train of regenerative braking is derived. Using this new power flow method, the voltage characteristics of a typical AC electric railway system is easily analyzed in both cases of traction and regenerative braking of the trains. We show that the presented method can be applied effectively in order to analyze the AT-fed AC electric railway system in both cases of traction and regenerative braking of the trains. A STATCOM(Static Synchronous Compensator) is applied to the system in order to improve the voltage drop problem and this case is also analyzed to show the effect of STATCOM.

Development of the down-scaled compensator for the solution of unbalanced load (부하불평형 해소를 위한 축소형 보상설비 개발)

  • Kim Joorak;Han Moonseob;Lee Changmu;Jung Hosung;Park Hyunjune;Kang Moonho;Kim Junghoon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.649-654
    • /
    • 2005
  • This paper proposes analysis on new equipment for power quality in electric railway. The proposed equipment consists of series inverter and parallel inverter. Each inverter is connected by capacitor as dc link. This structure can be compensated for active and reactive power in catenary through transformer.

  • PDF

A Study on Power-Quality Improvement in Electric Railway Power Supply System (전기철도 급전시스템에서 전력품질 향상에 관한 연구)

  • Bang, Seong-Won;Lee, Seung-Hyuk;Jung, Hyun-Soo;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.228-230
    • /
    • 2001
  • This paper represents the application of the Static Var Compensator(SVC) on the electric railway power supply system. The purpose of the electric equipment can be summarized as to improve electrical power quality and to maintain the voltage. This paper shows that the SVC is necessary for voltage compensation in the railway power supply system and verify effectiveness of the SVC through the simulation. In this paper, the case studies were performed with the various line length and train position.

  • PDF

A Study on the Voltage Drop Compensation in AC Electric Railway (교류 전기철도의 전압강하 보상에 관한 연구)

  • Han S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.896-899
    • /
    • 2003
  • The electric railway has been widely used as a transportation all over the world. It also was opened in 1973 in korea and it has been steadily proceeded in making electric railway network for a big city and building Keongbu high speed , electric railway. That's why the system of electric railway is able to solve the environmental pollution and operate the useful energy in environmental ways, it helps to increase the ability of transportation and to decrease the cost. Because of the advantage of making the economic situation better, the system of electric railway is trying to do their best in developing technique of electric railway. Because of the increasing of transportation and the high speed operation, cars with regenerative braking system was adapted. Therefore, unbalanced voltage and current of three phase system and the drop and rise of voltage of feeding circuit is expected. Now that building the substation, newly spends lots of costs and time, it is a very difficult situation to solve the problem. We can guess that electric railway line can't receive power from the power system of bigger size in building newly electric railway. In this paper, it was proved that series voltage compensator was suitable as a solution according to voltage drop and voltage fluctuating through computer simulation.

  • PDF

Compensation of Voltage Drop Using the SVC in Electric Railway Power Supply System (SVC를 이용한 전기철도 급전시스템에서의 전압강하 보상)

  • Bang, Seong-Won;Jung, Hyun-Soo;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.289-291
    • /
    • 2001
  • This paper represents the application of the Static Var Compensator (SVC) on the electric railway power supply system to compensate for the voltage drop. The high reactance of line and a heavy train load consume a significant amount of the reactive power which results the voltage drop. This paper shows that the SVC is necessary for voltage compensation in the railway power supply system and verify effectiveness of the SVC through the simulation by using PSCAD/EMTDC. In this paper, the case studies were performed with the various line length and train loads.

  • PDF

A Study on a Current Control Based on Model Prediction for AC Electric Railway Inbalance Compensation Device (교류전력 불평형 보상장치용 모델예측기반 전류제어 연구)

  • Lee, Jeonghyeon;Jo, Jongmin;Shin, Changhoon;Lee, Taehoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.490-495
    • /
    • 2020
  • The power loss of large-capacity systems using single-phase inverters has attracted considerable attention. In this study, optimal switching sequence model prediction control at a low switching frequency is proposed to reduce the power loss in a high-power inverter system, and a compensation method that can be utilized for model prediction control is developed to reduce errors in accordance with sampling values. When a three-level, single-phase inverter using a switching frequency of 600 Hz and a sampling frequency of 12 kHz is adopted, the power factor is improved from 0.95 to 0.99 through 3 kW active power control. The performance of the controller is also verified.

Comparison of Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors With Flywheel (플라이휠을 장착한 농형/권선형 전동기를 이용한 두 고조파 보상 시스템의 비교)

  • 김윤호;이경훈;양성혁;박경수
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in the power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration, noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power network system. Among various approaches, in this paper, two kinds of approaches are compared and evaluated. They are flywheel compensator based on secondary excitation of wounded rotor induction motor(WRIM) and primary excitation of squirrel cage induction motor(SCIM). Both systems have a common structure. They use a flywheel as a energy storage device and use PWM inverters.

  • PDF