• Title/Summary/Keyword: Railway Bogie

Search Result 350, Processing Time 0.029 seconds

The Conceptual Design of High Speed Railway Train System (고속전철 차량시스템의 개념설계)

  • Choi Yong-Hoon;Kim Kyoung-Taek;Yoon Se-Kyun;Chung Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.285-290
    • /
    • 2005
  • In this paper, the general process of the conceptual design of high speed train system was introduced by the review of the design process of Korea High Speed Train. The development of a general design process of high speed train is necessary in order to lead a high speed railway market in the future. For the conceptual design of high speed train system, the goals to develop a new high speed train are set. The different high speed train configurations are chosen regarding traction power, bogie type, etc and repeatedly evaluated with respect to the requirements

  • PDF

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Prediction of Interior Noise for Tilting Train by using Transmission Loss (투과손실을 이용한 틸팅차량의 실내소음 예측)

  • Kim, Jae-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.405-408
    • /
    • 2007
  • In this paper, we describe the analysis of interior noise for tilting train that is being developed in Korea. Tilting train is made of composite material to reduce the car body's weight and attached a self-steering system on bogie to improve curving performance. However, the acoustic performance (Transmission Loss) of such material is worse than the materials of conventional train, such as aluminum, steel and so on. Therefore, we measure the transmission loss of side wall/floor of tiling train and predict the interior noise for tilting train using its measuring results.

Dynamic Analysis of a Bogie Tilting Mechanism (대차 틸팅 기구의 동적 해석)

  • 구동회;김남포;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed curve negotiation without any modification of infrastructure. In order to achieve the optimal car-body position control through the tilting mechanism, a dynamics analysis was required after the kinematics analysis of the tilting mechanism. For this, the geometric relationship of the linkage-type tilting mechanism was defined. Then, the equations of motion for the half car-body were derived. With the derived equations, the effect of the parameter change on performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational conditions in which the tilting vehicle is applied.

Development of a New Three-dimensional Finite Element Analysis Model of High-speed Railway Bridges (고속철도교량의 새로운 3차원 유한요소 해석모델의 개발)

  • 송명관;한인선;김선훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.444-451
    • /
    • 2003
  • In this study, a new three-dimensional finite element analysis model of high-speed railway bridges considering train-bridge interaction, in which various improved finite elements are used for modeling structural members, is proposed. The box-type bridge deck of a railway bridge is modeled by the NFS(Nonconforming Flat Shell) elements with 6 degrees of freedom. Track structures are idealized using the beam finite elements with the offset of beam nodes and those on Winkler foundation with two parameters. And, the vehicle model devised for a high-speed train is employed, which has an articulated bogie system. By Lagrange's equations of motion, the equations of motion of a bridge-train system can be formulated. Finally, by deriving the equations of the forces acting on a bridge considering bridge-train interaction the complete system matrices of total bridge-train system can be constructed. As numerical examples of this study, 2-span PC box-girder bridge is analyzed and results are compared with experimental results.

  • PDF

Analysis of patent-map for railway vehicles (철도차량분야 특허맵 분석연구)

  • Jang Seung-Ho;Jo Young-Geol;Do Hwa-Yong;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1051-1055
    • /
    • 2005
  • In this paper, the trend of the market demand for the technology of railway cars and the development direction of other country or company were studied by analysing the patent map. The effort for developing the technology is intensified from the middle of 1960s and it seems to be more strengthened especially in the parts of bogie, driving motor/power, window and door. Recently the increasing rate of the number of patent application from Germany and China is noticeable. The results of this paper can be used for making the development plans of competitive technologies and benchmarking of them.

  • PDF

Development of Tilting Algorithm of Vehicle System (차량시스템의 틸팅 알고리즘개발)

  • Song Youngsoo;Kim Nam-Po;Ko Taehwan;Hna Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.611-616
    • /
    • 2003
  • The application of the tilting train is one of the most efficient ways to increase curving speed of train on existing tracks or on mountain railway lines with sharp curves. It can increase the running speed and ensure the passenger comfort and safety at the same time. Therefore, the development of tilting train has been paid high attention by many countries in the world. Tilting trains have been operated successfully in many countries such as Italy, Spain, Germany, Sweden, England and so on. The tilting trains possess broad prospects in raising speeds. The distributed EMU tilting train set will be developed according to the Korea railway conditions and will be operated on the Honam line, Janghang line and Jungang line. Because there is high percentage of curves on these lines. these lines are suited to operating tilting trains to raising speed and saving passenger traveling time. In order. to improve the curving performance of the tilling train. the active-control algorithm is utilized for the tilting bogie.

  • PDF

Review of Comparative Test Results of Ride Evaluation for Railway Vehicle (철도차량의 승차감 평가법에 의한 시험결과 고찰)

  • Lee Chang-Hwan;Lee Won-Sang;Kim Jin-Tae;Yoo Wan-Suk
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.28-35
    • /
    • 2003
  • In this paper, the ride comfort of a passenger coach installed with a KT23 type bogie was measured and evaluated through field test in operation routes. The ride comfort level was evaluated and analysed by ISO method and DIC method that were applied generally at railway fields. Particularly three evaluation methods, i.e., a simple method, a full standing method, and a full seating method of UIC513R standard, were fully applied to evaluate the ride quality. Also the vertical and lateral vibration levels on the floor were evaluated by peak-to-peak analysis method.

  • PDF

A Trend of Direct Drive Traction Motor for Next Generation Railway Vehicles (차세대 철도차량용 직접구동방식 T/M개발관련 기술개발 동향)

  • 권중록;김남해;김근웅;이정일;이종인
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.434-439
    • /
    • 2002
  • The researches on the direct drive system, which directly transfers axle load of the traction motor to wheels, have been developed as a next generation drive system in Japan and Europe. As a result of excluding couplings and gear units, the direct drive system has advantages on the bogie mount space to be smaller sized, lower noisy, more efficient and less weighted than the conventional drive system - indirect drive system. Since the simplification of the direct drive system design depends on the design of the traction motors, the researches on the direct drive system with focusing on the traction motors get started. The advantages/disadvantages of direct drive system, types, structures, cooling systems and interfaces of the traction motors are presented on this paper. Furthermore, the development of other countries on the electric equipments of the next generation railway vehicles are discussed and the necessity & requirement for developing new concepts of traction motors are assured.

  • PDF

An Experimental Study on the Displacement of Suspension Element for High Speed Rolling-stock (고속철도차량 현가요소 운동변위에 대한 실험적 연구)

  • Kim, Hyung-Jin;You, Won-Hee;Park, Tae-Won;Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.798-803
    • /
    • 2006
  • The suspension elements like primary coil spring, yaw damper, body to body damper are core parts of high speed railway bogie and the faults relating to these elements are reported recently. Thus, this study is started to analyze the displacements characteristics of suspension elements of high speed railway rolling-stock for the purpose of preventing the faults and developing the maintenance technology for suspension elements like spring and dampers. For this purpose, we made a plan to measure the displacements of the primary coil spring, yaw damper and body to body damper in actual running condition. We developed the measurement device to measure the longitudinal displacement and angular displacement of suspension elements and installed this device to test suspension elements. Test to measure displacements of suspension elements is conducted in service line of high speed railway. The displacement data which is acquired from the test with actual vehicles was analyzed for its maximum displacement depending on the track sections. As a result of analysis, we obtained the displacement trends occurring with the sections and valuable results like maximum values and the displacement distribution.