• Title/Summary/Keyword: Railroad-tunnel

Search Result 233, Processing Time 0.026 seconds

An experimental study on the improvement of tunnel drainage system using a geogrid composite (지오그리드 복합 배수재를 이용한 터널 배수성능 개선에 관한 실험적 연구)

  • Lee, Jun S.;Choi, Il-yoon;Lim, Jihoon;Yoon, Suk Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • A new testing equipment is designed to investigate the characteristics of the drainage fabric which is used in the tunnel drain system. The equipment is possible to model the loading as well as boundary conditions of the shotcrete precisely and it follows the general guideline of ASTM D4716 so that the interface between shotcrete and concrete lining retains the real situation in the tunnel site. Using the real loading conditions and surface irregularities, the flow rate and its capacity of the regular fabric has been estimated. A composite drainage fabric having geogrid inside was also used to investigate the flow rate and its efficiency. The advantages of the composite fabric compared with the regular one have been demonstrated using the experimental data and brief outline of the future work is finally proposed.

Prediction Method and Characteristics of Micro-pressure Wave on High-speed Railway Tunnel (고속선 터널미기압파 특성 및 예측기법 연구)

  • Yun, Su-Hwan;Nam, Seong-Won;Kim, Seok-Won
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • This paper describes a prediction method for micro-pressure wave emitted from a tunnel on the Kyung-bu high-speed railway. Pressure and micro-pressure wave were measured simultaneously to obtain some constants for the prediction method. The change of a micro-pressure wave were analyzed according to the speed of the train, the track bed type, and the distance from a tunnel portal. At a train speed of 300km/h, the micro-pressure wave of 4.0km long ballast track tunnel is about 7.5Pa; that of 3.3km long slab track tunnel is about 14.3Pa The strength of the micro-pressure wave decreases in inverse proportion to the distance and becomes about 0.5~1.0Pa at a point of 100m from the tunnel exit. Micro-pressure waves were predicted using the formula with the obtained the constants. Using a comparison between the predicted data and field measurement data, it was confirmed that micro-pressure wave can be predicted easily through the prediction formula.

Study on Impulse Wave Radiated from High Speed Railway Tunnel Exit with Baffle Plate (배플 플레이트를 가지는 고속철도 터널 출구로부터 방사하는 미기압파에 관한 연구)

  • Kim, Tae Ho;Kim, Dong Hyeon;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, as the high speed railway becomes more common, new environmental problems such as noise around tunnels are appearing. When a high speed train enters a tunnel, a compression wave in the tunnel is generated and propagated toward the tunnel exit at a sonic speed. When it reaches the tunnel exit, a part of compression wave radiates as a pulse typed impulse wave to the outside of tunnel. The impulse wave has an explosive noise. When the impulse wave is propagated around a village, it induces a serious noise or other problems to the resident. In order to solve these engineering problems, it is important to investigate the radiation characteristics of the impulse wave radiated from the tunnel exit. In this study, the effect of the length and angle of the baffle plate at the tunnel exit on the impulse wave radiated from the tunnel exit was investigated by numerical analysis. As a results, the baffle plate greatly affected the propagation of impulse wave.

Seismic evaluation of masonry railroad tunnels (조적식 철도터널의 내진성능평가에 관한 연구)

  • Lee, In-Mo;Jeong, Kyeong-Han;Lee, Jun-Suk;Choi, Jin-Yu;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2002
  • Domestic masonry railroad tunnel lining consists of red bricks or granite stone blocks and mortar. It is necessary to evaluate the behaviour of the masonry tunnel lining during an earthquake because the lining was constructed without the consideration of seismic loads. In this study, a methodology to evaluate the seismic resistant capacity of masonry tunnel linings was proposed, i.e. material property evaluation and seismic analysis technique. The red brick masonry tunnel lining is arrayed with multi-layers composed of 3 to 5 bricks depending on ground conditions and each brick is attached with mortar. Equivalent property concept was adopted to consider the stiffness difference among the red brick material itself and joints between bricks. Response spectrum analysis was performed by considering ground-structure interactions. A parametric study was performed to figure out the effect of relative stiffness between the lining and rock mass on the seismic behavior. A resonable countermeasure to minimize the earthquake-induced damage was also proposed.

  • PDF

Effectiveness of critical velocity method for evacuation environment in a railroad tunnel at fire situation (철도터널 내 화재 시 대피환경 확보를 위한 임계속도 산정식의 유효성 평가)

  • Lee, Seung-Chul;Lee, Jae-Heon;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The effectiveness of one dimensional critical velocity method for evacuation environment at 10MW fire size in a railroad tunnel have been investigated in this paper by three dimensional CFD method. It was performed to evaluate the evacuation environment in terms of temperature distribution, visible distance distribution and CO concentration at some tunnel inlet velocity, 1m/s, 2m/s (near critical velocity), and 3m/s. At all inlet velocity, passenger should give away downward the flow direction because the inlet velocity can not afford to sufficient evacuation environment for passengers. In case of 3m/s inlet velocity, however, the evacuation environment for passengers is better than the other cases. To provide more safe evacuation environment on fire situation, tunnel inlet velocity should be larger than critical velocity.

  • PDF

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

Assessment of Rockmass Damage around a Tunnel Using P Wave Velocity Tomography (P파 속도 토모그래피를 이용한 터널 주변의 암반손상 평가)

  • Park, Chul-Soo;SaGong, Myung;Mok, Young-Jin;Kim, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.53-60
    • /
    • 2009
  • Construction of a tunnel induces rock masses damage around the tunnel. The degree of damage produced on rock masses will affect on the mechanical and hydraulic behaviors of the rock masses. In this paper, P wave velocity measured by cross-hole test was used to assess rock masses damage around the test tunnel. Initiation of source signal was carried out using mechanical impact at the source installed borehole. In consequence, the generated P wave signal was low noise and apparent wave form, which allows accurate pick-up of first arrival time. From the test, the region where rock damage is expected shows relatively low P wave velocity. In addition, with multiple points of P wave velocity measurement along each cross-hole, two dimensional P wave tomography was obtained. The tomography provides apparent view of the rock damage behind the tunnel. The measured P wave velocity was correlated with features of rock masses, porosity and Q value.

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Investigating the Stress on Fault Plane Associated with Fault Slip Using Boundary Element Method (경계요소법을 이용한 단층 슬립에 따른 단층면 응력에 관한 연구)

  • Sung Kwon, Ahn;Hee Up, Lee;Jeongjun, Park;Mintaek, Yoo
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.598-610
    • /
    • 2022
  • Avoiding a fault zone would be a best practice for safety in underground construction, which is only sometimes possible because of many restrictions and other field conditions. For instance, there is an ongoing conception of Korea-Japan subsea tunnels that inevitably cross a massive fault system in the Korea Strait. Therefore it was deemed necessary to find an efficient way of predicting the likely behaviour of underground structures under fault slip. This paper presents the findings from simple numerical analysis for investigating the stress induced at a normal fault with a dip of 45 degrees. We used a boundary element software that assumed constant displacement discontinuity, which allowed the displacement to be estimated separately at both the fault's hangingwall and footwall sides. The results suggested that a principal stress rotation of 45 degrees occurred at the edges of the fault during the slip, which was in agreement with the phenomenon for fault plane suggested in the body of literature. A simple numerical procedure presented in this paper could be adopted to investigate other fault-related issues associated with underground structure construction.

A Study on Analysis of Passenger Safety in Railroad Tunnel Fire - Using Simulation - (시뮬레이션을 이용한 철도터널 화재 사고의 승객 안전도 분석)

  • Kim, Dong-Jin;Moon, Seong-Am;Kim, Dong-Gun;Kim, Kyung-Sup;Jang, Young-Joon;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.131-136
    • /
    • 2007
  • In this paper, the methodology to predict the number of deaths and possible fire propagation scenarios will be described in case of fire on a train in a tunnel. We use a probabilistic analysis method for the evaluation of possibility for each scenario and the deaths tolls are calculated with the help of the passenger evacuation simulation program. The resulting safety of passengers is displayed on a F/N graph, which could be used in part as a guideline to predict the safety level of the tunnel in fire.