• Title/Summary/Keyword: Rail-Bridge Interaction

Search Result 87, Processing Time 0.022 seconds

Reliability-Based Optimum Design of High-Speed Railway Steel Bridges Considering Bridge/Rail Longitudinal Analysis and Bridge/Vehicle Dynamic Effect (교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 고속철도 강교량의 신뢰성 최적설계)

  • Lee, Jong-Soon;Ihm, Yeong-Rok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.974-982
    • /
    • 2009
  • To improve the effectiveness and economics the bridge design methodology considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect suggested in this study. The reliability-based Life-Cycle Costs(LCC) effective optimum design is applied to a 2-main steel girder bridge, 5$\times$(1@50m) for comparison with conventional design, initial cost optimization and equivalent LCC optimization. As a result of the optimum design based on reliability, it may be stated that the design of High-Speed railway bridges considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect are more efficient than typical existing bridges and LCC optimization without respect to bridge/rail longitudinal analysis and bridge/vehicle dynamic effect. The result of optimization design considering the interaction, design methodology suggested in this study, is higher than result of initial cost optimization design in initial cost, but that has the advantage than result of initial cost optimization design in expected LCC.

A Study on the Dynamic Interaction Analysis of Curved Bridge-AGT Vehicle (곡선교량-AGT 차량의 상호작용에 의한 동적 거동에 관한 연구)

  • Lee An-Ho;Kim Ki-Bong;Kim Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.376-381
    • /
    • 2003
  • This study is focused on the dynamic response of curved bridge when the rubber tired AGT vehicles is running with alternative articulations. For the analytic approach, there is necessary for the three dimensional vehicle model with 11 degree of freedom and the three dimensional curved bridge model by means of finite element method. It can be described by conventional Lagrangian formula with respect to the dynamic interactions between vehicles and its met bridge. The formula is implemented by Fortran language on the simulation program designated BADIA II(Bridge-AGT Dynamic Interaction Analysis II). The solutions of the formula are derived by Newmark- ${\beta}$ method. The BADIA II is for the dynamic interactions between vehicle and curved bridge in terms of the roughness of running surface and guide rail. The applicability of the BADIA II is verified in terms of displacement and modal frequency. This study is described that the dynamic interactive behaviors between the rubber tired AGT vehicle and curved bridge in terms of the radius of curvatures of curved bridge, vehicle articulations, vehicle speeds, vehicle weights, flatness of running surface and roughness of guide rail using BADIA II.

  • PDF

Evaluation of Behavior of Direct Fixation Track and Track Girder Ends on Yeongjong Grand Bridge (영종대교 강직결 궤도 및 종형거더 단부의 거동 분석)

  • Choi, Jung-Youl;Chung, Jee-Seung;Kim, Jun-Hyung;Lee, Kyu-Yong;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study is to investigate the influence of train-induced end rotation of simple supported track girder on the performance of a direct fixation track system (DFTS) in Yeongjong grand bridge. In this study, the influences of deflection of a DFTS and track girder on dynamic rail-track girder interaction forces for the track girder ends currently employed in airport express lines were assessed by performing field tests using actual vehicles running along the service lines. Therefore, the dynamic displacement of rail and track girder and the fastener stress on the center and ends sections of DFTS were measured for two different trains (AREX and KTX) running in Yeongjong grand bridge. A three-dimensional finite element analysis (FEA) model using the time-history function based on the design wheel load was used to predict the train-induced track and track girder displacement, and the FEA and field test results were compared. The analytical results reproduced the experimental results well within about 3-7% difference in the values. Therefore, the FEA model of DFTS on track girder is considered to provide sufficiently reliable FEA results in the investigation of the behavior of DFTS. Using the analytical and experimental results, the influence of train-induced end rotation of simple supported track girder on the interaction behavior of rail and track girder installed on a simple supported track girder ends, i.e., upward displacement of rail-track girder and the fastener stress, was investigated. It was found that the train-induced end rotation effect of track girder was not significantly affected by the upward displacement of rails and the fastener stresses of track girder ends. Further, the interaction behavior of rail and track girder were similar to or less than that of the general railway bridge deck ends, nevertheless the vertical displacement of track was higher than that of conventional DFTS on the general railway bridge. From the results, the dynamic responses of the DFTS on track girder ends were not significantly affected by the safety and stability of DFTS ends.

Dynamic Interaction Analysis of Train-bridge Considering Rail-wheel Contact Mechanism (윤축-레일 접촉메카니즘을 고려한 열차-교량 동적상호작용 해석)

  • Min, Dong-Ju;Kwark, Jong-Won;Kim, Moon-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.363-373
    • /
    • 2015
  • The purpose of this study is to develop a nonlinear algorithm for the dynamic interaction analysis of KTX trains and bridge girders with consideration of separation and flange contact phenomena between wheel and rail. For this, three interaction models between wheel-rail are implemented and compared through numerical examples. That is, the spring model and the non-jump model are briefly explained, and a nonlinear contact model is then proposed to accurately simulate interaction forces of the train-bridge system. Dynamic interaction analysis of a simply supported girder and trains is performed and the analyzed results are presented and compared for the proposed contact model and the other model types. Particularly, flange contact phenomena in the nonlinear contact model are demonstrated under a specific condition.

Additional Axial Stress of CWR Track on the Bridge according to the Variation of Design Vehicle Load (설계차량하중 변화에 따른 교량상 장대레일 궤도의 부가축응력)

  • Yun, Kyung-Min;Jeon, Byeong-Heun;Choi, Shin-Hyung;Lim, Nam-Hyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.807-813
    • /
    • 2015
  • The CWR(Continuous Welded Rail) on a bridge shows complex structural behavior compared to those on the roadbed. The influence factors on the track-bridge interaction are the variation of temperature and vehicle load. The analysis methods for track-bridge interaction, material property, modeling method, loads and combination method are indicated in the domestic railway design principle, KR C-08080. The vehicle load in KR C-08080 was changed in 2014. In this study, to evaluate the effect of the changed vehicle load on the track-bridge interaction, the track-bridge interaction analyses were performed for 22 bridges by using finite element method.

Vehicle/bridge interactions of a rail suspension bridge considering support movements

  • Yau, J.D.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.263-276
    • /
    • 2009
  • This paper is intended to investigate interaction response of a train running over a suspension bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a set of nonlinearly coupled generalized equations by Galerkin's method, and solved using the Newmark method with an incremental-iterative procedure including the three phases: predictor, corrector, and equilibrium-checking. Numerical investigations demonstrate that the present iterative technique is available in dealing with the dynamic interaction problem of vehicle/bridge coupling system and that the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.

Evaluation of Dynamic Stability of KHSR Bridges Using Train/Track/Bridge Interaction Analysis Method (차량/궤도/교량 상호작용 해석법을 이용한 한국고속철도 교량의 동적안전성 평가)

  • 김만철;나성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1015-1021
    • /
    • 2001
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Performance Evaluation of KHSR Bridges Using 2-D Train/Track/Bridge Interaction Analysis Method (2차원 상호작용 해석법을 이용한 한국고속철도 교량의 성능평가)

  • 김만철;심성택;이희연
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.366-373
    • /
    • 2000
  • This paper represents the results carried out to determine the dynamic response characteristics of Korea High Speed Rail(KHSR) bridges. The responses of the KHSR bridges subjected to the moving train loading are obtained through the simplified method for the 2-dimensional train/track/bridge interaction analysis in which the eccentricity of axle loads and the effect of the torsional forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. The results of the analyses are compared with the field test data to verify the performance of the 2-dimensional train/track/bridge interaction analysis method.

  • PDF

Rail-Structure Interaction Analysis for Simple Span Bridges of the Taiwan High Speed Railway (대만 고속전철 단순교의 레일-구조물 상호작용 해석)

  • Yong-Gil Kim
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 2001
  • The additional stresses and displacements produced by the use of long rail, typical of the high-speed railway, are investigated for the Taiwan high-speed railway bridges. In addition, an important special feature of the Taiwan high Speed Railway Design Specifications specifies that service earthquake has to be considered during the rail-structure interaction analysis before evaluating the stresses and relative displacements of the bridge. As pound motion is taken into account under seismic event the seismic response of the structure is applied as displacement in the rail-structure interaction analysis. The stresses and relative displacements of the structure are checked according to the consideration of seismic loading.

  • PDF

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.