• Title/Summary/Keyword: Rail strain

Search Result 87, Processing Time 0.028 seconds

Development of Manufacturing Technology for Bumper Back Beam with Sandwich Plate (샌드위치판재를 적용한 자동차 범퍼 빔 개발)

  • Kim, D.K.;Ryu, J.S.;Park, S.E.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.199-202
    • /
    • 2009
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. Tn this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal Front Bumper Beam manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

Establishment of Maintance Methods for Express railway Bridges using High Rail Monitoring Systems (상시 계측결과를 이용한 고속철도 교량의 유지관리 기준치 설정)

  • Seo, Hyeong-Lyel;Han, Sang-Chul;Ji, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.322-327
    • /
    • 2006
  • Banwol bridge with steel plate girder and Pyongtaek bridge with PSC bos girder have been operated maintenance measuring system by the Seoul-Chonan of Kyongbu express railway. By analyzing the theoretical and experimental values of design load for these two bridge, the establishment of reference maintenance for measuring items was deduced from research. Two materials, steel and concrete plates, were considered as the upper structure. Actual measurement data for the behavior under speed, structural analysis results, and the presented references were analyzed and used to set up the reference establishment. The measuring items are stress(strain), displacement, dynamic acceleration, expansion movement, and dynamic frequency. The maintenance reference was established by comparing analytical and measuring values of the five items with respect to structural state class.

  • PDF

Effect of Heat Treatment Process on the Shadow Mask Tension (세도우 마스크 장력에 열공정이 미치는 영향)

  • 현도익;문영훈;조종래
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.487-492
    • /
    • 2003
  • Tension variations with heat treatment in shadow mask for flat braun tubes are investigated in this study. In CRT, landing shift of the electron beam due to thermal deformation of the tension mask made the color purity of screen worse. In order to get the final results of thermal deformation, the tensile force within the mask and the welding processes between the rail and the extended mask have to be analysed sequentially. In this study, the effect of heat treatment is studied in terms of tension variations of shadow mask during its manufacturing process.

Development of Manufacturing Technology for SILL SIDE with Roll Forming Process (롤 포밍 공법을 이용한 고강도 차체 SILL SIDE제작 기술 개발)

  • Kim, D.K.;Sohn, S.M.;Lee, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.357-360
    • /
    • 2008
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. In this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal SILL SIDE manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

Fatigue Strength Evaluation of Carbody and Bogie Frame for the Light Rail Transit System (경량전철에 대한 차체 및 대차틀의 피로강도평가)

  • Lee, Eun-Chul;Lee, Joon-Seong;Choi, Yoon-Jong;Lee, Jung-Hwan;Suh, Myung-Won;Lee, Ho-Yong;Lee, Yang-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.77-83
    • /
    • 2008
  • In terms of saving costs, energy and materials, the weight of cars has been gradually reduced by optimizing design of structure, which also gives us good performance. In compliance with this, it should satisfy the lifetime of cars for 25 years under the operation. The purpose of this study is to evaluate the strength of fatigue using date from strain gauges attached carbody and bogie frame. This dynamic stress can be evaluated using S-N curve based on stress amplitude. Modified S-N curve by CORTON-DOLAN is used for more conservative and substantial evaluation. In addition, !he loadings itself of carbody and bogie frame are considered by calculating the rate of the differences which are occurred between empty car and fuiiy occupied car with passengers. Rainflow cycle counting method is applied to arrange the stress data for the modified S-N curve to predict lifetime of the materials. Conclusively the cumulative damages are not only calculated by Miner's Rule, but the safety factors are also determined by Goodman diagram.

Hybrid Analysis of Displacement Behavior and Numerical Simulation on Tunnel Design (터널 변위 거동 및 수치 모의실험의 결합 해석)

  • Jeong, Yun-Young;Han, Heui-Soo;Lee, Jae-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • This study is focused on the analysis of tunnel behavior to estimate the stability on tunnel design. An estimation method was proposed as a hybrid consideration, which contains the displacement analysis by 3D numerical simulation, the maximum displacement obtained after field measurement, and an assessment of tunnel stability using a deformation analysis proposed by Sakurai(1988, 1997). The points of case study by Sakurai(1988, 1997) were replotted considering his analysis. From the new analysis of the tunnel case study, the trend line for analyzed points is analogized, which curve is divided into stable, unstable and failure zone. To evaluate the estimation method, a special shape of railway tunnel was selected, which are the Inchon international airport rail way connected to subway line 9 in Gimpo, Korea. The point s of upper and below track on the Inchon international airport rail way were satisfied to the stability of tunnel after reinforcing. Also the points shows the higher apparent Young's modulus, which resulted from improvement on shear strength by the micro silica grouting and the supporting of umbrella method. Therefore, if new analysis used, proper tunnel reinforcing method could be selected according to tunnel strain and geological property.

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.

Stability Evaluation of Track on Conventional Line According to Traveling Tilting Train (틸팅차량 주행에 따른 기존선 궤도의 주행안정성 평가)

  • Park, Yong-Gul;Eum, Ki-Young;Choi, Jung-Youl;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.701-708
    • /
    • 2007
  • A tilting train, which was developed to run the curve section without reducing the speed and compromising the riding quality, can improve the speed so as to reduce the travel time, compared to the existing trains. Then the force generated by the train operation to the track is in proportion to train operation speed, which means the track shall bear the increased force as much as the increase in train operation speed. Particularly, wheel load and lateral wheel load generated by train operation and distributed to the rail tend to cause the track to suffer the strain and furthermore the severe disaster such as derailment. To deal with such problem and ensure the train will run safety and stably, the tolerance in wheel load change, lateral wheel load and derailment coefficient was determined for quantitative evaluation of the train operation stability. In this study, derailment coefficient of inner and outer rail at existing curve section of tilting train was determined to evaluate the curve radius, possibility of acceleration and the need of rail improvement, which was then compared with the existing traditional train and high speed train. Conducting the quantitative evaluation of dynamic wheel load and lateral wheel load of each train, which was based on field survey, derailment coefficient and static & dynamic wheel load change, which serve the evaluation criteria of train operation stability, were determined for comparison with the standards, thereby analyzing the stability of the tilting train.

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.