• Title/Summary/Keyword: Rail steel

Search Result 205, Processing Time 0.025 seconds

Stability of Continuous Welded Rail Track under Thermal Load (온도하중을 고려한 장대레일 궤도의 안정성 해석)

  • Kang, Young Jong;Lim, Nam Hyoung;Shin, Jeong Ryol;Yang, Jae Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.281-290
    • /
    • 1999
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads ana speeds by improving rolling, welding, and fastening technology. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method. Rail element with a total of 14 degrees of freedom is used. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented.

  • PDF

Fatigue Reliability and Remaining Fatigue Life of Existing Steel Rail-Road Bridges (강철도교의 피로신뢰성과 잔존피로수명)

  • 조효남;신재철;허상구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.11-16
    • /
    • 1989
  • This paper presents a fatigue reliability model for the reliability-based evaluation of remaining fatigue life of existing rail-road bridges. It is demonstrated that the simple fatigue reliability model based on the Weibull distribution of fatigue life can be extended by incorporating various effects due to the rate of the train-traffic increase and in-service Inspections. The paper also suggests the system fatigue reliability analysis using an approximate formulation and 2nd-order bound solutions. The application of the proposed model to existing rail-road brdiges based on field load tests shows that it may be practically used for the assessment of fatigue reliability, remaining life, and in-service inspection scheduling of existing rail-road bridges.

  • PDF

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.

Die Design in Mandrel Drawing by using Backward Tracing Scheme: A Case for Hollow Linear Motion Guide Rail (역추적 기법을 활용한 중공형 LM-Guide Rail의 맨드렐 인발 금형 설계)

  • Kim, B.M.;Kim, S.H.;Lee, K.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.300-305
    • /
    • 2017
  • In this paper, a design method for an intermediate die was developed to manufacture a hollow linear motion guide rail in mandrel drawing process based on virtual die method and backward tracing scheme. FE simulations and mandrel drawing experiments using Mn55Cr carbon steel were performed to prove the effectiveness of the proposed design method. Results of FE simulations and experiments showed that the proposed design method could lead to drawn products with sound shape and the highest dimensional precision.

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

Sensitivity of the ballast resistance and track irregularity on the track stability (궤도 안정성에 대한 도상저항력과 궤도틀림의 민감도)

  • Lim, Nam Hyoung;Choi, Sang Hyun;Lee, Chin Ok;Sung, Ik Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.519-526
    • /
    • 2005
  • During summer, very high compressive force occurs on the continuous welded rail (CWR) track because of the increase of rail temperature (max. $60^{\circ}C$). This extreme temperature stress can cause the CWR track to buckle. Among many CWR parameters affecting the track buckling, the influence of the lateral and longitudinal ballast resistance was investigated on the stability of the CWR track in this study. Also, the sensitivity of the track irregularity such as the alignment defect and the gauge irregularity was investigated.

Effects of Vehicle Loads on Thermal Buckling Behavior of Continuous Welded Rail Tracks (장대레일 궤도의 온도좌굴 거동에 미치는 열차하중의 영향)

  • Choi, Dong Ho;Kim, Ho Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.727-736
    • /
    • 2000
  • The present study investigates the influences of vehicle induced loads on the thermal buckling behavior of straight and curved continuous welded rail (CWR) tracks. Quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deflection induced by wheel loads of vehicle. The lateral loads of vehicle induced by weight, the speed, the superelevation and curvature of track, and other dynamic vehicle track interaction, are included in the ratio of lateral to vertical vehicle load. Parametric numerical analyses are perfomed to calculate the upper and lower critical buckling temperatures of CWR tracks, and the comparison between the results of this work and the previous results without vehicle is also included.

  • PDF

Fatigue Properties of Rail Steel Under Constant Amplitude Loading and Variable Amplitude Loading (일정 및 변동하중하의 레일강의 피로특성)

  • Kim, Cheol-Su;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.654-661
    • /
    • 2001
  • In this study, fatigue growth behavior of the transverse crack, which was the most dangerous damage among the various types of rail defects, was investigated using the notched keyhole specimen under constant amplitude loadings. Fatigue limit of smooth specimen in rail steel at R=0 was 110MPa, and the fatigue crack initiation life in the region of the low stress amplitude (ie. long life) occupied the major portion of the total fatigue life. The fatigue strength under variable amplitude loading was converted to the equivalent fatigue strength based upon. Miners rule, which was estimated approximately 9% lower than that under constant amplitude loading. Also, in the low ΔK(sub)rms region ($\leq$21MPa√m), fatigue crack growth rate (da/dN) under constant amplitude loading was higher than that under variable amplitude loading, whereas the tendency was reversed in the high ΔK(sub)rms region. It is believed that this behavior is due to the transition of fracture appearance.

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.