• Title/Summary/Keyword: Rail Vehicle

Search Result 622, Processing Time 0.021 seconds

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

A Study on the Structural Strength Evaluation for the Development of One-ton Grade Commercial Vehicle Seat Frame for the FMVSS 201 Model (1톤급 상용차 시트 개발에 따른 FMVSS 210 Model 구조 강도 평가 연구)

  • Cho, Kyu-Chun;Ha, Man-Ho;Moon, Hong-ju;Kim, Young-Gon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.130-136
    • /
    • 2018
  • This study develops a seat with electric motor technology for a one-ton grade commercial vehicle. While applying electric motor technology, the FMVSS 210 seat frame strength test is also conducted to examine the product's weak parts. The seat frame strength test used the FMVSS 210 test standard and the ANSYS program was used to simulate the test and identify weak parts in the deformation and strain values. The test results showed that the cushion frame and slide rail connection bracket were fractured at loads of about 10,000 N. Similarly, the maximum stress and strain values in the bracket were obtained in the simulation results. On this basis, it was evaluated that the connection part bracket was a considerably weak part in the case of the first model, and changing the shape of the bracket and reinforcing the strength were required. In addition, the seat belt anchorage test results and simulation results were compared to assure their validity. In the comparison results, the error for each is about 5-10%. Therefore, the simulation performed in this study is considered to have produced reasonably accurate results.

A Study on the Association of Commuting Behavior with Individual Health (통근행태와 건강과의 연관성 분석에 관한 연구)

  • Seong, Hyeon-Gon;Sin, Gi-Suk;No, Jeong-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • This study is aimed at identifying the association of commuting behavior with health for workers in the Korea Capital Region. The study surveyed a total of 1,285 commuters whose major work is deskwork-oriented; the authors obtained their health status on body form, blood pressure and cholesterol as well as their commuting behavior. The measures of the latter were comprised of a main commuting mode, a use term, out-of-vehicle time, total travel time, transit transfer, and alternative mode in order to identify the amount of physical activity obtained through commuting behavior. The results indicate that non-automobile commuters are positively associated to improve their health status, as compared to car commuters. Specifically, bus commuters and walkers had decreased weight, blood pressure, and cholesterol, while rail commuters are only correlated to relieving cholesterol. In addition, the measures for health are improved as out-of-vehicle time increases. For commuters who drive to work, their health status tends to be worse.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

Analysis of Dynamic Characteristics for Concept Design of Independent-Wheel Type Ultra-High-Speed Train (독립차륜형 초고속 열차 개념 설계안의 동특성 해석)

  • Lee, Jin-Hee;Kim, Nam-Po;Sim, Kyung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, a concept design of a rail type ultra-high-speed train is proposed and its dynamic characteristics are analyzed. Instead of the existing solid axle, a new type bogie system and independently rotating wheels are applied in the proposed train. In order to analyze the dynamic characteristics, a multibody dynamic model of a vehicle is developed and the basic validity is verified by eigenvalue analysis. Also, it is shown that the critical speed is improved in comparison to that of existing high-speed train model HEMU-430X. Finally, through 7000R curved track driving analysis at a speed of 550 km/h, the lateral force of the wheels and the derailment quotient are estimated and the applicability of the new concept railway vehicle is confirmed.

Study on Critical Impact Point for a SB2 Class Flexible Barrier (SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구)

  • Heo, Yeon Hee;Kim, Yong Guk;Ko, Man Gi;Kim, Kee Dong
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

Kinematic Envelope Analysis of the Urban Transit EMU based on PSD Installation (PSD 설치에 따른 도시철도차량의 동적 거동 분석)

  • Chung, Jong-Duk;Ohn, Jung-Ghun;Pyun, Jang-Sik;Park, Jang-Gon;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.447-453
    • /
    • 2013
  • Since PSDs(Platform Screen Doors) are set up at many subway stations, their design related to safety has become gradually important. In particular, the interference check with a running railway vehicle is the most important of performance indices because the collision between PSDs and vehicles can be dangerous for passengers in the car and on platforms. When the train comes into a station with a curvature, the passenger car has a large translational and rotational motion and the displacement is enough for coming in contact with PSD. The performance is affected by many design parameters such as rail design parameters and vehicle velocity. This study proposes dynamic analysis models for railway vehicles and rails. Some parameters were also considered in the models to determine their influence on the performance.

A Study on the User Interface of Web-based Flexible Manufacturing System (웹기반 유연 생산시스템 사용자 인터페이스)

  • PARK JE-WOONG;KIM WON-JUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.68-72
    • /
    • 2004
  • A practical method to investigate the user interface of web based Flexible Manufacturing System(FMS) on the internet environment is established. Because the industrial FMS controller requires a lot of gadget, such as switch, dial, button, etc., for actual work-site flexible operation sufficiently, the user interface of the controller is significantly complex. The support for operational convenience of FMS controller can increase productivity and efficiency of the user, operational personnel of FMS. While most FMS provide their application programming interface(API) and graphical user interface(GUI) with adequate mechanism itself when used in stand alone, there is increasing demand for FMS that can operate with the intuitional user interface find virtual reality(V/R) environment. This thesis considers the intuitional user interface of Web-based FMS first, and from this, goes a step further, improves as virtual reality environment of FMS on the internet environments by using the feature based modeling technique approach and cartoon rendering. The feature-based modeling technique approach is applied to FMS line which is consist of facilities such as machining center, CNC lathe, autonomous guided vehicle, rail guided vehicle, and various controllers. In this study, the FMS established the intuitional user interface is able to obtain not only the operational convenience but also the enough productivity and significant efficiency.

  • PDF

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Vibration Reduction for a Railway Depot Building (I): Vibration/Noise Evaluation (철도인공대지에 건설된 아파트의 방진대책(I): 진동소음 평가)

  • Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.353-357
    • /
    • 2013
  • Property development along railway lines is a critical issue at present. Because various railway lines exist in most large cities, there are numerous properties and open spaces to be developed for communities associated with these lines. The active development of railway properties can be a means to resolve housing shortage problems in cities. In this first part of this paper, noise and vibration levels of an artificial area of land and apartment complex are measured and evaluated to derive a design strategy for vibration reduction purposes.