• Title/Summary/Keyword: Radon-222

Search Result 80, Processing Time 0.029 seconds

Assessment of Indoor Radon Pollution from Underground Water (지하수로부터의 라돈 실내오염 평가)

  • 유동한;김상준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.130-131
    • /
    • 2000
  • 라돈(Rn-222)은 우라늄(U-238) 방사능계열의 원소로서 라듐(Ra-226)의 붕괴시 자연생성되는 가스상 물질이다. 화학적으로는 불활성이며 무색, 무취의 특성을 가지고 있다. 공기보다 8∼9배 무겁기 때문에 지표면 가깝게 존재하므로 인체노출이 쉬운 물질로 알려져 있다. 라돈은 최근까지도 온천 등지에서 건강에 매우 좋은 원소로 알려져 왔으나 사실은 기준치 이상의 라돈을 마시거나 호흡했을 경우, 치명적인 폐암을 유발시킨다는 것이 밝혀졌다(Doull et al, 1999) (중략)

  • PDF

Study on the Ventilation Effect in the Two Compartment Model for Indoor Radon Pollution (실내라돈오염을 위한 2구역 모델에서의 환기영향평가)

  • 유동한;김상준;양지원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.237-238
    • /
    • 2001
  • 라돈(Rn-222)은 우라늄(U-238) 방사능계열의 원소로서 라듐(Ra-226)의 알파($\alpha$)붕괴시 자연생성되는 가스상 물질이다. 암석 내에서 생성되어 공극내에서 물에 용해된 라돈은 붕괴하지 않고 상태를 유지하게 되는데 이런 라돈이 존재하는 암석층으로부터 지하수를 취수할 경우, 상당량의 라돈이 지하수속에 용해되어 있을 수 있다. 이렇게 용해된 상당량의 라돈은 실내공기로 휘발하면서 주변으로 확산하게 된다. (중략)

  • PDF

Ambient Air Radon Concentrations of Characteristic in Korea (국내 대기중 라돈농도의 특성)

  • ;;;;;T. lida;K. Yoshioka
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.50-51
    • /
    • 1999
  • 라돈($^{222}R$)은 암석이나 토양 같은 지각물질에서 발생되는 3.82일의 반감기를 가진 자연 방사선물질로 1980년대 중반부터 미국을 비롯한 유럽의 선진국에서 환경적인 측면에서 라돈의 관심이 증대되었다. 한편, 국내에서의 라돈에 관한 연구는 실내공기질 분야에서 진행되고 있으나 대기환경적 측면에서의 종합적이고 체계적인 연구가 활발히 이루어지지 않고 있는 실정이다.(중략)

  • PDF

Performance Evaluation of Several Radon Detectors in the Standard Chamber and Dwellings (라돈 표준실과 가옥 내에서 일부 라돈검출기에 대한 성능 평가)

  • Yoon, Seok-Won;Kim, Yong-Jae;Chang, Byung-Uck;Byun, Jong-In;Yun, Ju-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.173-181
    • /
    • 2008
  • To ensure the performance of radon detectors, three passive radon detectors ($RadTrak^{(R)}$, $Radopot^{(R)}$, and $E-PERM^{(R)}$)have been reviewed. The difference ratios of RadTrak and Radopot tested in the radon standard chamber were -13.2% and -6.0%, respectively, which were in good accordance within 20% of the value measured by $AlphaGUARD^{(R)}$. To ensure the performance of the long term measurement, the 3 detectors were installed at the same position of approximately one hundred of dwellings for one year. The correlation curve between RadTrak and Radopot shows good agreement with a correlation coefficient ($R^2$) of 0.91. However, The correlation curve between E-PERM and Radopot shows bad agreement ($R^2$ = 0.021). In addition, the distribution map of annual mean indoor gamma dose rate measured with E-PERM was not in accordance with the distribution map of outdoor gamma dose rate measured by Portable Ion Chamber. According to the results, some requisites for the selection of the radon passive detectors in the large-scale indoor radon survey were discussed.

Evaluation of Indoor Radon Levels in a Hospital Underground Space and Internal Exposure (의료기관 지하시설의 라돈가스 측정과 내부피폭 조사)

  • Song, Jea-Ho;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.231-235
    • /
    • 2011
  • Radium is rock or soil of crust or uranium of building materials and thorium after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like mine or basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. Radium sheath of medical institution treat person's life is possible big danger to professional regarding radioactivity who has much amount exposed radioactivity and weaker immune patient. so we do this test. Using measuring instrument at test is real time radium measuring instrument, Professional Continuous Radon monitor, and measuring places are basement first floor and second floor of two hospitals and measure from 10 a.m to 3 p.m. Measurement result of Professional Continuous Radon monitor is minimum 14.8 Bq/$m^3$ to maximum 70.3 Bq/$m^3$ and show domestic baseline below 148 Bq/$m^3$, effective dose-rate is minimum 0.296 mSv to maximum 1.406 mSv that show 2.4 mSv, 10~58.3% level, exposed radiation amount from nature radiation one year.

Evaluation of Excess Lung Cancer Risk in Korean due to Indoor Exposure to Natural $^{222}Rn$ Progenies (한국인의 실내 라돈-222 자핵종 피폭으로 인한 초과 폐암위험)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.57-70
    • /
    • 1992
  • An excess risk of lung cancer mortality among Koreans, attributable to indoor $^{222}Rn$ daughters exposure, were quantitatively evaluated by applying a stochastic health risk projection model on the radiation exposure. The lung cancer rate in Korean males and females, based on the 1989 demographic data, were estimated to be $22.4/10^5-y\;and\;9.5/10^5-y$, respectively The lifetime baseline lung cancer risks, deduced from these rates, appeared to be 0.047 and 0.019 for males and females, respectively, and were lower than the corresponding 1984 values of 0.067 and 0.025 in the U.S.A. The excess risk coefficients, derived by modified relative risk projection model of the BEIR-IV Committee under the US National Academy of Science, per annual 1.0 WLM of exposure to indoor radon daughters were estimated to be 0.022/WLM for males, 0.009/WLM for females, and 0.017/WLM for both sexes. The resulting annual frequency of excess lung cancer mortality for the life expectancy in the Korean population appeared to be 230/10^6-WLM, which was an approximate median of $120{\sim}450/10^6-WLM$ reported so far in the world.

  • PDF

Growth and Decay of Alpha Tracks in a Large Scale Cloud Chamber after Injection of Radon

  • Wada, Shinichi;Kobayashi, Tsuneo;Katayama, Yoshiro;Iwami, Toshiaki;Kato, Tsuguhisa;Cameron, John R.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.275-278
    • /
    • 2002
  • The recognition of the natural background radiation is important not only for radiological education but also for the promotion of people's scientific view about radiation. We made a "room" on the web showing natural background radiation as part of a VRM (Virtual Radiation Museum). The "room" shows the video images of the tracks of charged particles from natural background radiation, alpha and beta ray track from known sources using a Large Scale Diffusion Cloud Chamber. The purpose of this study is to make clear the origin of a kind of track (named A-track) which is thick and easy to recognize with the length less than several cm in the cloud chamber, and to make numerical explanation of its counting rate. The study was carried out using a Large Scale Diffusion Cloud Chamber (Phywe, Germany) installed in the Niigata Science Museum. The Model RNC (Pylon Electronics, Canada) was used as Rn-222 source. Ra-226 activity in RNC was 111.6 Bq calibrated with NIST protocol. Rn-222 gas was injected into the cloud chamber. Continuous video recording with use of Digital Handycam (SONY, Japan) was carried out for 360 min. after injection of Rn-222 gas. The number of alpha-ray track (alpha track) in the video images was analyzed. The growth and decay curve of the total activity of Rn-222 and its alpha emitting progeny were calculated and compared with the count of the alpha tracks. As a result the alpha tracks formed by Rn-222 injection resemble A-Tracks. The relationship between A-track in the cloud chamber and atmospheric Rn is discussed.

  • PDF

Hydrogeological Characteristics of a Riverine Wetland in the Nakdong River Delta, Korea

  • Jeon, Hang-Tak;Cha, Eun-Ji;Lim, Woo-Ri;Yoon, Sul-Min;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • Investigating the physical and chemical properties of riverine wetlands is necessary to understand their distribution characteristics and depositional environment. This study investigated the physical (particle size, color, and type) and chemical properties (organic, inorganic, and moisture contents) of sediments in Samrak wetland, located in the Nakdong River estuary area in Busan, South Korea. The particle size analysis indicated that the hydraulic conductivity values for the coarse grain and the mixture of coarse and fine grains ranged from 2.03 to 3.49×10-1 cm s-1 and 7.18×10-3 to 1.24×10-7 cm s-1, respectively. In-situ water quality and laboratory-based chemical analyses and radon-222 measurement were performed on groundwater and surface water in the wetland and water from the nearby Nakdong River. The physical and chemical properties of Samrak wetland was characterized by the sediments in the vertical and lateral direction. The concentrations of chemical components in the wetland groundwater were distinctly higher than those in the Nakdong River water though the wetland groundwater and Nakdong River water equally belonged to the Ca-HCO3 type.

Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea (국내 화산암 지역 지하수 중 자연방사성 물질에 대한 환경 특성)

  • Jeong, Do Hwan;Kim, Moon Su;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Dong Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.36-45
    • /
    • 2013
  • We analyzed natural radionuclides in 80 wells in volcanic rock areas and investigated environmental characteristics. Uranium and radon concentrations ranged from ND to $9.70{\mu}g/L$ (median value: 0.21) ${\mu}g/L$, 38~29,222 pCi/L (median value: 579), respectively. In case of gross-${\alpha}$, 26 samples exceeded MDA (minimum detectable activity, < 0.9 pCi/L) value and the activity values ranged from 1.05 to 8.06 pCi/L. The radionuclides concentrations did not exceed USEPA MCL (maximum contaminant level) value of Uranium ($30{\mu}g/L$) and gross-${\alpha}$ (15 pCi/L). But Rn concentrations in 4 samples exceeded USEPA AMCL (Alternative maximum contaminant level, 4,000 pci/L) and one of them showed a significantly higher value (29,222 pCi/L) than the others. The levels of uranium concentrations in volcanic rock aquifer regions were detected in order of andesite, miscellaneous volcanic rocks, rhyolite, basalt aquifer regions. Radon, however, was detected in order of miscellaneous volcanic rocks, rhyolite, andesite, basalt aquifer regions. The correlation coefficient between uranium and radon was r = 0.45, but we found that correlations of radionuclides with in-situ data or major ions were weak or no significant. The correlation coefficient between the depth of wells and uranium concentrations was a slightly higher than that of depth of wells and radons. Radionuclide concentrations in volcanic rock aquifers showed lower levels than those of other rock aquifers such as granite, metamorphic rock aquifers, etc. This result may imply difference of host rock's bearing-radioactive-mineral contents among rock types of aquifers.

Optimal Method of Radon Analysis in Groundwater using Ultra Low-Level Liquid Scintillation Counter (극 저준위 액체섬광계수기를 이용한 지하수 중 라돈($^{222}Rn$) 측정법 연구)

  • Kim Yong-Je;Cho Soo-Young;Yoon Yoon-Yeol;Lee Kil-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.59-66
    • /
    • 2006
  • Optimal method of radon analysis in groundwater was studied using ultra low-level liquid scintillation counter (ULLLSC) which is well known as an analytical instrument for analyzing the alpha and beta radionuclides in environmental materials. Optimization of pulse shape analyzer (PSA) in operating the LSC was performed with $^{241}Am\;and\;^{90}Sr/^{90}Y$ as well as $^{226}Ra$ Also, the chemical quenching of scintillation generation and the color quenching of the generated photon to photomultiplier tubes (PMT) were determined their effects not only to decrease the analytical efficiency but also to change the optimal PSA level and background due to high ion contents of groundwaters. The optimal PSA level was shown in the range of 90 to 110 with less than 5% error. The effects of high ion contents in groundwater for the analytical efficiency show within 10% error from the different ion contents. The chloroform as a quenching agent was used to determine the analytical efficiency with the different amount, showing that the efficiency decreases 20% using the 2% of chloroform.