• Title/Summary/Keyword: Radius influence

Search Result 339, Processing Time 0.075 seconds

Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device (콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구)

  • Kim, Ji-Chul;Lee, Hak-Yeol;Kim, Il-Soo;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Process of pulsations of the spherical cavity in a liquid under the influence of ultrasonic vibrations

  • Kuznetsova, Elena L.;Starovoitov, Eduard I.;Vakhneev, Sergey;Kutina, Elena V.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The process of pulsation of a cavitation pocket in liquid is investigated. The Kirkwood-Bethe model was used to describe the motion. A numerical solution algorithm based on the Runge-Kutta-Felberg method of 4-5th order with adaptive selection of the integration step has been developed and implemented. It was revealed that if the initial bubble radius exceeds a certain value, then the bubble will perform several pulsations until the moment of collapse. The same applies to the case of exceeding the amplitude of ultrasonic vibrations of a certain value. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies and to evaluate the influence of various process parameters on the intensity of cavitation.

A Study on Improvement of Demand Estimation in Urban Railway through Segmentations of Station Influence Areas (역세권 세분화를 통한 도시철도 수요예측 개선에 관한 연구)

  • Jeon, Sangmin;Chung, Sungbong;Kim, Sigon;Cho, Hangung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.673-678
    • /
    • 2012
  • Accurate demand estimating process in the construction of urban railway is very important, and precise validation is required. Existing model formula in the 4 phase model is limited in the estimation of the demand the administrative boundary-based zone system reflects no spatial railway demand characteristics around railway stations. The purpose of this study is improving the accuracy of urban rail demand estimation through segmentations of station influence areas and modal split characteristics within the areas. According to the case analysis, it is possible to set up the ststion influence area with a radius of 500m in the urban region and 1,000m in the suburban. And eastablishing proper segmentations of the ststion influence area shows more accurate results to the real demand of railway stations.

A STUDY ON THE ANALYSIS OF THE CURVE OF SPEE ON THE GNATHOLOGICAL CAST AND THE CEPHALOMETRIC RADIOGRAPH (악태모형과 측모두부 계측 방사선 사진상 스피만곡 분석에 관한 연구)

  • Choi, Ah-Young;Kim, Jeong-Sun;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.2
    • /
    • pp.323-335
    • /
    • 1998
  • Clinically, the curve of Spee is widely applied as a determined level of the occlusal curvature when the oral rehabilitation and the reconstruction of the prosthesis is needed at the malalignment dentition due to the missing, extrusion, and the inclination of the teeth. The purpose of this study was to analyze the curve of Spee of the occlusal curvature which influences to the occlusal form and the location three dimensionally, and then was to measure the radius and the degree of curvature of the curve of Spee and also was to investigate the influence to the cuspal inclination according to the change of the inclination of the curve of Spee which was analyzed by AutoCAD R.13 program at the gnathological cast and the cephalometric radiograph. The following results were obtained : 1. The radius of the curve of Spee was the mean of $11.74{\pm}3.64cm$ in the model, $12.75{\pm}4.63cm$ in the radiograph and there was no significant difference statistically between the model and the radiograph(P>0.001). 2. The radius and the degree of curvature of the curve of Spee showed negative correlation(r=-0.80), while the radius and the degree of curvature of the curve of Spee in relation to the length of the curve of Spee did not show correlation. 3. The case of the curve of Spee inclined to the posterior, that is. $Post.M{\theta}$ group showed the mean of $4.73{\pm}3.64$, positive correlation to the P2m, M1mm, M1dm, M2dm, and especially the greatest correlation coefficient to the mesial inclination angle of the mesio-buccal cusp tip of the first molar(r=0.70). 4. The case of the curve of Spee inclined to the anterior, that is, $Ant.M{\theta}$ group showed the mean of $3.28{\pm}3.59$, positive correlation to the P2m, M1mm, and also the greatest correlation coefficient to the mesial inclination angle of the mesio-buccal cusp tip of the first molar(r=0.78

  • PDF

Application of Slip-line Method to the Evaluation of Plastic Zone around a Circular Tunnel (원형터널 주변의 소성영역 평가를 위한 slip-line 해석법 활용)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.312-326
    • /
    • 2022
  • The generalized Hoek-Brown (GHB) criterion, which is recognized as one of the standard failure conditions for rock mass, is specialized for rock engineering applications and covers a wide range of rock mass conditions. Accordingly, many research efforts have been devoted to the incorporation of this criterion into the stability analysis of rock structures. In this study, the slip-line analysis method, which is a kind of elastoplastic analysis method, is combined with the GHB failure criterion to derive analytical equations that can easily calculate the plastic radius and stress distribution in the vicinity of the circular tunnel. In the process of derivation of related formulas, it is assumed that the behavior of rock mass after failure is perfectly plastic and the in-situ stress condition is hydrostatic. In the formulation, it is revealed that the plastic radius can be calculated analytically using the two respective tangential friction angles corresponding to the stress conditions at tunnel wall and elastic-plastic boundary. It is also shown that the plastic radius and stress distribution calculated using the derived analytical equations coincide with the results of Lee & Pietruszczak's numerical method published in 2008. In the latter part of this paper, the influence of the quality of the rock mass on the size of the plastic zone, the stress distribution, and the change of the tangential friction angle was investigated using the derived analytical equations.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (I) -Deformation Plasticity Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (I) - 변형소성에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Park, Yeong-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1672-1679
    • /
    • 2002
  • This paper provides an engineering J estimation equation for cylinders with finite internal axial surfacecracks under internal pressure. The proposed equation is the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-O) materials. Based on detailed 3-D FE results using deformation plasticity, plastic influence functions for fully plastic J components are tabulated for practically interesting ranges of the mean radius-to-thickness ratio, the crack depth-to-length ratio, the crack depth-to-thickness ratio. the strain hardening index for the R-O material, and the location along the semi-elliptical crack front. Based on tabilated plastic influence functions, the J estimation equation along the crack front is proposed and validated for R-O materials. Good agreements between the FE results and the proposed J estimation provide confidence in the use of the proposed method to elastic-plastic fracture mechanics of pressurized piping.